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Abstract

Real PCF is an extension of the programming language PCF with a data type for real
numbers. Although a Real PCF definable real number cannot be computed in finitely
many steps, it is possible to compute an arbitrarily small rational interval containing the
real number in a sufficiently large number of steps. Based on a domain-theoretic approach
to integration, we show how to define integration in Real PCF. We propose two approaches
to integration in Real PCF. One consists in adding integration as primitive. The other
consists in adding a primitive for function maximization and then recursively defining
integration from maximization. In both cases we have a computational adequacy theorem
for the corresponding extension of Real PCF. Moreover, based on previous work on Real
PCF definability, we show that Real PCF extended with the maximization operator is
universal.

1 Introduction

Traditionally, in computing science one represents real numbers by floating-point approxima-
tions. If we assume that these approximations are “exact” then we can prove correctness
of numerical programs by analytical methods. Such an idealization is the idea behind the
so-called BSS model [6]. However, such “correct” programs do not produce correct results
in practice, due to the presence of round-off errors. Moreover, they are inappropriate for
problems whose solution is sensitive to small variations on the input.

As a consequence, “exact real number computation” has been advocated as an alterna-
tive solution (see e.g. [7, 8, 42] on the practical side and e.g. [5, 31, 32, 36, 43, 44, 45] on
the foundational side). However, work on exact real number computation has focused on
representations of real numbers and has neglected the issue of data types for real numbers.
In particular, programming languages for exact real number computation with an explicit
distinction between operational semantics, which is representation-dependent, and denota-
tional semantics, which is representation-independent, have hardly been investigated. Two
exceptions are [25, 26, 27] and [21]. Such programming languages do allow for correctness
proofs based on analytical methods.

Real PCF [21] is an extension of the programming language PCF [34] with a data type
for real numbers, with operational and denotational semantics. Of course, the operational
semantics cannot evaluate a program denoting a real number in finitely many steps. However,
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it can compute an arbitrarily small rational interval containing the real number in a sufficiently
large number of steps.

There have been a number of applications of domain theory to the construction of com-
putational models for classical spaces, including locally compact Hausdorff spaces [14] and
metric spaces [17]. These models have resulted in new techniques in real number computa-
tion. In particular, the computational measure and integration theory [11, 14, 16, 18] has had
various applications, including exact computation of integrals, fractal geometry [15], statisti-
cal physics [10], stochastic processes [13] and neural networks [12, 35]. In domain-theoretic
integration, one obtains increasingly better approximations to the value of the integral of a
real-valued function.

In order to handle integration in Real PCF, we generalize Riemann integration of real-
valued maps of a real variable to interval-valued maps of an interval variable. This also extends
the results in the interval analysis approach to integration [33]. Based on our approach,
M. Alvarez-Manilla [2] has recently developed a similar generalization of Riemann-Stieltjes
integration.

We propose two approaches to integration in Real PCF. One consists in adding integration
as primitive. The other consists in adding a primitive for function maximization and then
recursively defining integration from maximization. In both cases we have a computational
adequacy theorem for the corresponding extension of Real PCF. Moreover, based on previous
work on Real PCF definability [23], we show that Real PCF extended with the maximization
operator is universal.

The fact that we are able to handle integration in Real PCF shows the strength of such
a denotational approach to exact real number computation and makes explicit the effective
content of domain-theoretic integration.

Since numerical solution to differential equations is invariably based on integration of func-
tions, Real PCF with integration also provides a framework for solving differential equations
up to any precision.

Organization

In Section 2 we briefly introduce Real PCF. In Section 3 we relate (not necessarily continuous)
real valued functions of real variables to Scott continuous interval valued functions of interval
variables. In Section 4 we define interval Riemann integrals. In Section 5 we extend Real
PCF with a primitive for integration.
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2 Real PCF

In this section we summarize the results of [21, 23, 22] needed in this paper. We assume
familiarity with PCF [34, 29]. We are deliberately informal concerning syntax. For simplicity
and without essential loss of generality, in this paper we consider Real PCF restricted to the
unit interval. For a formal account of syntax and a general treatment of real numbers see [21].

2.1 Interval expansions

It is well-known that decimal expansions of real numbers are not appropriate for real number
computation, if we read infinite expansions from left to right. For example, multiplication
by 3 is not computable w.r.t. decimal representation. In fact, any base has essentially the
same problem [45].

Let us consider binary expansions of numbers in the unit interval [0, 1]. In this case,
a solution for the above problem is to allow the digit 1

2
in addition to the digits 0 and 1.

According to Martin-Löf [32], this kind of solution goes back to Brouwer.
For an ∈ {0, 1

2
, 1}, the sequence

a1a2 · · · an · · ·
represents the number ∑

n≥1

an2−n.

Therefore the operations

a1a2 · · · an · · · 7→ 0 a1a2 · · · an · · ·
a1a2 · · · an · · · 7→ 1

2
a1a2 · · · an · · ·

a1a2 · · · an · · · 7→ 1 a1a2 · · · an · · ·
correspond to the following maps of the unit interval into itself:

s0(x) = (x + 0)/2

s 1
2
(x) = (x + 1

2
)/2

s1(x) = (x + 1)/2.

Thus, a binary expansion represents an intersection of a shrinking chain of intervals:

a1a2 · · · an · · ·
represents ⋂

n≥1

sa1 ◦ · · · ◦ san([0, 1]).

Example 2.1 Routine algebra shows that the average operation

x⊕ y = (x + y)/2

satisfies the equations

s0(x)⊕ s0(y) = s0(x⊕ y)

s0(x)⊕ s1(y) = s 1
2
(x⊕ y)

s1(x)⊕ s0(y) = s 1
2
(x⊕ y)

s1(x)⊕ s1(y) = s1(x⊕ y),
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which can be considered as a recursive definition of the average map [19]. ¤

There is no reason to commit ourselves to the particular operations s0, s 1
2

and s1. These
operations are uniquely determined by their images [0, 1

2
], [ 1

4
, 3

4
], and [ 1

2
, 1] respectively, in

the following sense. Given any interval [a, b] ⊆ [0, 1], there is a unique increasing affine map

cons[a,b] : [0, 1] → [0, 1]

with range [a, b], namely

cons[a,b](x) = (b− a)x + a.

That is, cons[a,b] rescales and translates the unit interval so that it becomes [a, b]. Therefore
the maps s0, s 1

2
and s1 are equal to the maps cons[0, 1

2
], cons[ 1

4
, 3
4
], and cons[ 1

2
, 1] respectively.

Definition 2.1 A sequence of intervals

[a1, b1], [a2, b2], . . . , [an, bn], . . .

is said to be an interval expansion of the interval
⋂

n≥1

cons[a1,b1] ◦ cons[a2,b2] ◦ · · · ◦ cons[an,bn]([0, 1]). ¤

For example, interval expansions formed from the intervals

[0, 1/10], [1/10, 2/10], . . . , [9/10, 1]

are essentially decimal expansions of real numbers contained in the unit interval.
Interval expansions denote iterated selections of subintervals. For example, the interval

expansion
[0, 1

2
], [ 1

4
, 3

4
], [ 1

2
, 1], [0, 1

2
], . . . ,

which corresponds to the binary expansion 0 1
2
10 · · · , can be interpreted as the following

sequence of instructions: select the two middle quarter parts of the interval [0, 1
2
], select

the second half of the resulting interval, select the first half of the resulting interval, and
so on. Thus, an interval expansion denotes an intersection of a shrinking chain of intervals.
Conversely, any shrinking chain of intervals gives rise to an interval expansion, as shown in
Section 2.4.

2.2 The interval domain

We think of intervals as approximations of real numbers, the singleton intervals being “exact”
approximations. We consider these approximations as generalized real numbers, which we
refer to as partial real numbers. Therefore, we sometimes notationally identify singleton
intervals and real numbers.

We let R be the set of real compact intervals ordered by reverse inclusion, denoted by v.
The letters x,y, z, a,b, c in bold font range over R, and we write

x = [x,x].

The poset R is a bounded complete domain [1]. Its way-below relation is given by
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x ¿ y iff the interior of x contains y.

The set Max(R) of maximal elements (singleton intervals) with the subspace topology induced
by the Scott topology of R is homeomorphic to the Euclidean real line.

We also consider the domain I[a, b] of all closed subintervals of [a, b] and the domain
R? = IR? of compact intervals of the extended real line R? = R ∪ {−∞, +∞}. The domain
I[0, 1] is denoted by I. Notice that R lacks a bottom element, and that the bottom elements
of I and R? are [0, 1] and [−∞, +∞] respectively.

2.3 Canonical extensions of continuous real valued maps of real variables

In this subsection we consider the domain R of compact real intervals ordered by reverse
inclusion. The results stated for R also hold for I.

Every continuous map f : Rn → R extends to a Scott continuous function If : Rn → R
defined by

If(x1, . . . ,xn) = {f(r1, . . . , rn)|r1 ∈ x1, . . . , rn ∈ xn},
called its canonical extension. For n = 1 we reason as follows. Since f is continuous, it
maps connected sets to connected sets, and compact sets to compact sets. Hence it maps
compact intervals to compact intervals. Therefore If is well-defined. But extensions of maps
to powersets preserve intersections of ⊇-directed sets. Therefore If is Scott continuous.
For n arbitrary the argument is analogous. It is easy to see that the canonical extension
is the greatest monotone extension. Since it is continuous and every continuous function is
monotone, it is also the greatest continuous extension.

If the function f is increasing in each argument, with respect to the natural order of R,
then If is given pointwise:

If(x1, . . . ,xn) = [f(x1, . . . ,xn), f(x1, . . . ,xn)].

If f is decreasing in each argument, then If is given “antipointwise”:

If(x1, . . . ,xn) = [f(x1, . . . ,xn), f(x1, . . . ,xn)].

Convention 2.1 We often notationally identify the function f with its extension If , and
a real number r with the singleton interval {r}. The same convention applies to functions
denoted by operator symbols, such as addition denoted by +. ¤

Two important examples are

x + y = [x + y,x + y],

px + q = [px + q, px + q],

for p ≥ 0 and q arbitrary.

2.4 Real PCF

In this subsection we introduce the primitive operations of Real PCF and then we define Real
PCF to be PCF extended with constants and reduction rules for these operations.

5



The cons map

Definition 2.2 We define a binary operation � on I by

x� y = consx(y).

¤

Recall that a monoid is a set together with an associative binary operation and a neutral
element.

Theorem 2.2

1. (I,�,⊥) is a monoid.

2. The information order of the domain I coincides with the prefix preorder of the
monoid (I,�,⊥), in the sense that

x v z iff x� y = z for some y.

Moreover, such a suffix y is unique iff x is non-maximal.

Item 1 is the basis for the operational semantics of Real PCF and item 2 is the fundamental
link between the denotational and the operational semantics.

If x v z and x is non-maximal then we denote the unique suffix y such that x � y = z
by z� x. Now it is easy to see that a shrinking a chain of intervals can be represented by an
interval expansion. In fact,

a1 v a2 v · · · v an v . . .

is a chain of non-maximal intervals with join x iff the sequence

a1, (a2 � a1), . . . , (an+1 � an), . . .

is an interval expansion of x.
The (canonical extensions of the) affine maps consa for a 6= ⊥ with distinct rational end-

points will play a rôle analogous to the rôle played by the successor map on natural numbers.

The tail map

The predecessor map, undefined or arbitrarily defined at zero, is a left inverse of the successor
map. Similarly, we now consider a continuous left inverse of consa; that is, a map taila such
that

taila(consa(x)) = x.

Since this equation is equivalent to

taila(a� x) = x,

we see that taila removes the prefix a from its argument, if such a prefix exists.
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In order to define taila : I → I, we first define taila : [0, 1] → [0, 1] and then we take
its canonical extension. The co-restriction of cons[a,b] : [0, 1] → [0, 1] to its image [a, b] is
invertible. Hence the continuous map defined by

tail[a,b](x) =





cons−1

[a,b](a) if x ≤ a

cons−1

[a,b](x) if x ∈ [a, b]
cons−1

[a,b](b) if x ≥ b

=





0 if x ≤ a
(x− a)/(b− a) if x ∈ [a, b]
1 if x ≥ b

= max(0, min((x− a)/(b− a), 1))

is a left inverse of cons[a,b] : [0, 1] → [0, 1], and its canonical extension is a left inverse of the
canonical extension of consa.

The head map

Here we consider a counterpart of the equality test for zero on natural numbers. For each
r ∈ (0, 1) define a continuous map x 7→ (x <⊥ r) : I → T , where T = {true, false}⊥, by

x <⊥ r =





true if x < r
false if x > r
⊥ otherwise.

We are interested in the case that r is rational.

Remark 2.3 The function x 7→ (x <′
⊥ r) : I → T , defined by

x <′
⊥ r =





true if x < r
false if x ≥ r
⊥ otherwise.

is monotone but not continuous, and hence not computable. In fact, equality of real numbers
is not decidable [32] (but see below). The map x 7→ (x <⊥ r) can be regarded as the best
continuous approximation to the monotone function x 7→ (x <′

⊥ r). ¤

We write
headr(x) = (x <⊥ r).

Again, we are interested in the case that r is rational.

The parallel conditional

Finally we need the parallel conditional, defined by:

pif p then x else y =





x if p = true
y if p = false

x u y if p = ⊥.
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This map is also continuous. The idea is that x u y is the best information compatible with
both x and y. Therefore, if the condition is undefined then this information can be safely
produced anyway (see Subsection 2.4 below).

Example 2.2 The recursive definition of average of real numbers given in Example 2.1
generalizes to a recursive definition of average of intervals:

consL(x)⊕ consL(y) = consL(x⊕ y)

consL(x)⊕ consR(y) = consC(x⊕ y)

consR(x)⊕ consL(y) = consC(x⊕ y)

consR(x)⊕ consR(y) = consR(x⊕ y),

where
L = [0, 1

2
], C = [ 1

4
, 3

4
], R = [ 1

2
, 1].

By means of the primitives that we have introduced, this recursive definition can be rewritten
as

x⊕ y = pif head 1
2
(x) then pif head 1

2
(y) then consL(tailL(x)⊕ tailL(y))

else consC(tailL(x)⊕ tailR(y))
else pif head 1

2
(y) then consC(tailR(x)⊕ tailL(y))

else consR(tailR(x)⊕ tailR(y)). ¤

For more recursive definitions of real functions such as the complement map x 7→ 1−x, binary
maximum, multiplication, and logarithm see [21, 22].

A note on the parallel conditional

Recall that the sequential conditional is defined by

if p then x else y =





x if p = true
y if p = false
⊥ if p = ⊥.

Proposition 2.4 Let R be a domain with Max(R) homeomorphic to the real line or the unit
interval, let D be any domain, let p : R → T be a continuous predicate, let g, h : R → D be
continuous functions, and define a function f : R → D by

f(x) = if p(x) then g(x) else h(x).

If p is non-trivial, in the sense that there are maximal elements x and y such that p(x) = true
and p(y) = false, then f is non-total, in the sense that
f(z) = ⊥ for some maximal element z.
Proof The non-empty disjoint sets U = p−1(true)∩Max(R) and V = p−1(false)∩Max(R)
are open in Max(R), because p is continuous, and {true} and {false} are open in T . Hence
U ∪ V 6= Max(R), because Max(R) is connected. Therefore there is some maximal element z
such that p(z) = ⊥. ¤
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Thus, the sequential conditional is not appropriate for definition by cases of total functions
on R, because it produces non-total functions in non-trivial cases.

In most definitions by cases of the form

f(x) = pif p(x) then g(x) else h(x)

which occur in practice, one has that g(x) = h(x) for all maximal x with p(x) = ⊥. This is
the case, for instance, in the recursive definition of average given in Example 2.2. Another
example is given by the following definition of the absolute value function:

|x| = pif x <⊥ 0 then − x else x.

For the case x = 0 one has

|0| = pif ⊥ then − 0 else 0 = 0 u 0 = 0.

Hence, the parallel conditional is also useful to overcome the fact that equality of real numbers
is not decidable.

2.5 Operational semantics of Real PCF

Definition 2.3 Real PCF consists of PCF extended with a ground type I for the unit
interval and constants for the primitive operations introduced in this subsection, restricted
to rational parameters. ¤

An extension of PCF with a further type for the real line is introduced in [21].
The operational semantics of Real PCF is given by the following immediate reduction

rules:

1. consa(consbM) → consa�b M

2. taila(consbM) → fix consL if b ≤ a

3. taila(consbM) → fix consR if b ≥ a

4. taila(consbM) → consb�a M if a v b and a 6= b

5. taila(consbM) → cons(atb)�a(tail(atb)�b M)

if a 6v b 6v a and a t b exists and is not a singleton

6. headr(consaM) → true if a < r

7. headr(consaM) → false if a > r

8. pif trueMN → M

9. pif false MN → N

10. pif L (consaM) (consbN) →
consaub(pif L (consa/(aub) M) (consb/(aub) N))

if a u b 6= ⊥
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11. N → N ′
MN → MN ′ if M is consa, taila, headr or pif

12. M → M ′
pifLM → pifLM ′ N → N ′

pifLMN → pifLMN ′ .

Notice that the first reduction rule is associativity of the operation � expressed in a different
way.

Roughly, these rules

1. reduce computations on partial real numbers to computations on intervals with rational
end-points, namely the subscripts of cons and tail, and

2. “factor out” as many cons primitives as possible.

The underlying idea is that if we have a program X of the form

consa(X ′) with X ′ unevaluated,

then we know that the result of X is contained in the interval a, because by definition consa
is a map with image a.

Definition 2.4 A Real PCF program of the form consa(X) is said to be a partially eval-
uated program with partial result a. ¤

2.6 Computational adequacy of Real PCF

The above reduction rules allow us to partially evaluate any program, producing better and
better partial results converging to its actual result, in the sense of Theorem 2.5 below.

We extend the notion of computable PCF term to Real PCF by adding the following clause
to the inductive definition given in [34]:

Definition 2.5 A Real PCF program X denoting a partial real number x is computable
if for every non-bottom x′ ¿ x, as close to x as we please, the program X produces a partial
result a with x′ v a, in finitely many reduction steps. ¤

Theorem 2.5 (Computational adequacy) Every Real PCF term is computable.

It follows that a program has some partial evaluation iff it does not denote bottom; it is
important here that a cannot be bottom in a primitive operation consa.

2.7 Universality of Real PCF

Definition 2.6 A programming language L is universal if every computable element in
the universe of discourse of L is L-definable. ¤

10



PCF is not universal. However, PCF extended with the parallel conditional and the existential
quantification operator ∃ : (N → T ) → T defined by

∃(p) =





true if p(n) = true for for some n
false if p(⊥) = false
⊥ otherwise.

is universal [34]. Real PCF with no extensions is not universal, because ∃ is not definable. If
we extend Real PCF with ∃ and the computation rules given in loc. cit., then the adequacy
property remains true.

Theorem 2.6 Real PCF extended with ∃ is universal.

3 Scott continuous functions R → R
In this section we include unpublished results from [22], which relate (not necessarily contin-
uous) functions R → R to Scott continuous functions R → R. Subsection 3.1 considers the
continuous case in a generalized setting, and Subsection 3.2 considers the general case.

3.1 Partial real valued functions

In this subsection we consider continuous functions defined on any space with values on the
extended partial real line R?.

The projections π, π : R? → R? defined by

π(x) = x and π(x) = x

are not continuous because they don’t preserve the specialization order, as the specialization
order of R? is discrete.

The set of extended real numbers endowed with its natural order ≤ is a continuous lattice,
and so is its opposite [28]. Moreover, for any space X, a function f : X → R? is lower
semicontinuous iff it is continuous with respect to the Scott topology on R? induced by ≤,
and it is upper semicontinuous iff it is continuous with respect to the Scott topology on R?

induced by ≥. It is clear from this observation that the above projections are respectively
lower and upper semicontinuous.

In order to avoid the rather long terms “lower semicontinuous” and “upper semicontin-
uous”, we denote by R and R the set of extended real numbers endowed with the Scott
topologies induced by ≤ and ≥ respectively, and we refer to the points of these topologi-
cal spaces as respectively lower and upper real numbers. Thus, the above projections are
continuous functions π : R? → R and π : R? → R.

The projections satisfy
π ≤ π

pointwise. Thus, given any continuous function f : X → R?, we can define continuous
functions f : X → R and f : X → R by composition with the projections, and we have that
f ≤ f pointwise. Conversely,
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Lemma 3.1 For any space X and all continuous maps f : X → R and
f : X → R with

f ≤ f

pointwise, there is a unique continuous map f : X →R? such that

f = π ◦ f and f = π ◦ f,

namely [f, f ] defined by
[f, f ](x) = [f(x), f(x)].

Proof It suffices to show that [f, f ] is continuous. Given a basic open set ↑↑y in R?, we
have that

[f, f ]−1(↑↑y) = {x ∈ X|y ¿ [f, f ](x)}
= {x ∈ X|y ¿R f(x) and y ¿R f(x)}
= {x ∈ X|y ¿R f(x)} ∩ {x ∈ X|y ¿R f(x)}
= f−1(↑↑R y) ∩ f

−1(↑↑R y)

is an open set, because ↑↑R y and ↑↑R y are open sets in R and R respectively. Therefore [f, f ]
is continuous. ¤
Thus, for any space X, a continuous function f : X →R? is essentially the same as a pair of
continuous maps 〈f : X → R, f : X → R〉 with f ≤ f pointwise.

We can thus say that an extended partial real number is given by a pair 〈x, x〉 of respec-
tively lower and upper real numbers with x ≤ x.

Corollary 3.2 R? is homeomorphic to the subspace of R×R consisting of pairs of extended
real numbers 〈x, x〉 with x ≤ x.

Since R? is a bounded complete domain with bottom, it is a densely injective space [28],
which means that for any dense subspace inclusion X ⊆ Y , every continuous map f : X →R?

extends to a continuous map f̂ : Y → R?. In fact, there is always a greatest continuous
extension, given by the equation

f̂(y) =
⊔↑

y∈V

l

x∈V ∩X

f(x),

where V ranges over the open sets of Y , which is a particular case of the equation given
in [28, 39].

Proposition 3.3 Let X be a dense subspace of a metric space Y and
f : X → R? be a continuous map. Then the greatest continuous extension f̂ : Y → R?

of f is given by

f̂(y) =

[
lim inf

x→y
f(x), lim sup

x→y
f(x)

]
.

Here x → y is a short-hand for x ∈ X and x → y.
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Proof

f̂(y) =
⊔↑

y∈V

l

x∈X∩V

f(x)

=
⊔↑

ε>0

l

x∈X,d(x,y)<ε

[
f(x), f(x)

]

=
⊔↑

ε>0

[
inf

x∈X,d(x,y)<ε
f(x), sup

x∈X,d(x,y)<ε
f(x)

]

=

[
sup
ε>0

inf
x∈X,d(x,y)<ε

f(x), inf
ε>0

sup
x∈X,d(x,y)<ε

f(x)

]

=

[
lim inf

x→y
f(x), lim sup

x→y
f(x)

]
. ¤

In particular, if f : X → R? is a continuous map, then the above proposition applied to the
coextension s ◦ f : X → R? of f to R?, where s : R? → R? is the singleton embedding,
produces a greatest extension f̂ : Y →R? of f , given by

f̂(y) =

[
lim inf

x→y
f(x), lim sup

x→y
f(x)

]
.

Let f : R → R be continuous. By the above remark, if f has a limit at ∞, then f̂(∞) =
limx→∞ f(x). For a pathological example, consider f : (R − {0}) → R defined by f(x) =
sin(1/x). Then f̂(0) = [−1, 1] and f̂(∞) = 0, so that f̂ behaves as the so-called topologist’s
sine curve [30].

Lemma 3.4 Every continuous map f : R→R has a greatest continuous extension f̂ : R→
R, given by

f̂(x) =
l

f(x).

Proof Since this is clearly the greatest monotone extension, it suffices to show that it is
continuous. In this proof we make use of the upper power space construction [38, 40, 41, 14].
Let U be the endofunctor on the category of topological spaces which assigns to a space X
its upper space, whose points are the non-empty compact saturated sets of X, and which
assigns to a continuous map f : X → Y the continuous map Uf : UX → UY defined by
Uf(Q) = ↑↑f(Q). Then for any space X the map x 7→ ↑↑x : X → UX is continuous, and for
any continuous u-semilattice D, the meet map

d
: UD → D is well-defined and continuous.

Since R is a continuous u-semilattice and a subspace of UR, the map f̂ is continuous, because
it can be expressed as the following composition of continuous maps:

R ⊂ - UR
Uf- UR

d
- R

x 7→ x 7→ ↑↑f(x) 7→
l
↑↑f(x) =

l
f(x).

(Note: This also shows that the assignment f 7→ f̂ is Scott continuous, and is a particular
case of a much more general fact about injectivity established in [20]). ¤
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3.2 Discontinuous functions in real analysis versus Scott continuous func-
tions in domain theory

This subsection contains results about extensions of arbitrary real valued functions to con-
tinuous partial real valued functions.

In real analysis one often considers discontinuous functions f : R → R, but in many
cases only the points of continuity of f are interesting. For instance, a function f : R → R
is Riemann integrable on any compact interval iff it is bounded on compact intervals and
continuous almost everywhere [37]. Moreover, the integral of f depends only on its points
of continuity. The following theorem shows that such uses of ad hoc discontinuity can be
avoided in domain theory.

Lemma 3.5 For any function f : X → R? defined on a metric space X there is a greatest
continuous map f̃ : X →R? agreeing with f at every point of continuity of f , given by

f̃(x) =

[
lim inf

y→x
f(y), lim sup

y→x
f(y)

]
.

Proof We know from classical topology and analysis that

g(y) = lim inf
x→y

f(x)

is the greatest lower semicontinuous function below f , and that

g(y) = lim sup
x→y

f(x)

is the least upper semicontinuous function above f (see e.g. [9, 37]). Since f̃ is [g, g], it is
continuous by Lemma 3.1. Since f is continuous at y iff limx→y g(x) exists iff lim infx→y f(x) =
lim supx→y g(x), f̃ agrees with f at every point of continuity of f . ¤

Theorem 3.6 For any function f : R→ R bounded on compact intervals there is a greatest
continuous map f̂ : R → R agreeing with f at every point of continuity of f , given by

f̂(x) = [inf g(x), sup g(x)],

where g : R→ R and g : R→ R are continuous maps defined by

g(y) = lim inf
x→y

f(x) and g(y) = lim sup
x→y

f(x).

Proof Since f is bounded on compact intervals, the function f̃ : R → R? defined in
Lemma 3.5 corestricts to R. By Lemma 3.4, the corestriction can be extended to a function
f̂ : R→ R, given by

f̂(x) =
l

f̃(x) = [inf g(x), sup g(x)]. ¤
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4 Interval Riemann integrals

A generalization of the Riemann theory of integration based on domain theory was introduced
in [11]. Essentially, a domain-theoretic framework for the integration of real-valued functions
w.r.t. any finite measure on a compact metric space was constructed using the probabilistic
power domain of the upper space of the metric space. In this work we are only be concerned
with integration w.r.t. the Lebesgue measure (uniform distribution) in Rn.

In order to extend Real PCF with integration, we embark on a novel approach compared
to [11] for integration w.r.t. the Lebesgue measure in R, in that we consider integration of
maps of type Rn → R rather than Rn → R. We deduce various properties of integration
defined in this way, which are interesting in their own right as well.

In Subsection 4.1 we introduce simple interval Riemann integration. In Subsection 4.2
we introduce multiple Riemann integration, which is related to simple interval Riemann in-
tegration via an extension of the so-called Fubini’s rule. In Subsection 4.3 we introduce a
supremum operator, which is used in Section 5 to obtain a fixed-point definition of Riemann
integration.

4.1 Simple interval Riemann Integrals

Recall that (the canonical extension of) addition in R is defined by

x + y = [x + y,x + y],

and that given a real number α ≥ 0 and a partial real number x, we have that

xα = αx = [xα,xα].

We denote the diameter of an interval x ∈ R by dx:

dx = x− x.

A partition of an interval [a, b] is a finite set of the form

P = {[a, x1], [x1, x2], . . . , [xn−1, xn], [xn, b]}.

We denote by P[a, b] the set of all partitions of [a, b]. A partition Q refines a partition P
if Q is obtained by partitioning some elements of P , in the sense that there is a (necessarily
unique) family {Qx}x∈P such that Q is its disjoint union and Qx is a partition of x for each
x ∈ P . Such a family is called the refinement witness. The following lemma is immediate:

Lemma 4.1 P[a, b] is directed by the refinement order. That is, for any two partitions of
[a, b] there is a third partition refining both.

Definition 4.1 Let f : R → R be a map and [a, b] be an interval. An interval Riemann
sum of f on [a, b] is a sum of the form

∑

x∈P

f(x)dx for P ∈ P[a, b]. ¤
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Lemma 4.2 Let f : R → R be a monotone map (w.r.t. the information order). If a
partition Q of an interval [a, b] refines a partition P then

∑

x∈P

f(x)dx v
∑

x∈Q

f(x)dx.

Therefore, the set of interval Riemann sums of f on [a, b] is directed.
Proof If two compact intervals x1 and x2 just touch then

f(x1 u x2)d(x1 u x2) = f(x1 u x2)(dx1 + dx2)

= f(x1 u x2)dx1 + f(x1 u x2)dx2

v f(x1)dx1 + f(x2)dx2.

By induction, if successive elements of the sequence x1, . . . ,xn just touch then

f(
nl

k=1

xk)d(
nl

k=1

xk) v
n∑

k=1

f(xk)dxk.

Hence, if {Qx}x∈P is the refinement witness, then for any x ∈ P ,

f(x)dx v
∑

y∈Qx

f(y)dy,

because x =
d

Qx. By monotonicity of addition and induction on the size of P ,
∑

x∈P

f(x)dx v
∑

x∈P

∑

y∈Qx

f(y)dy.

Since Q is the disjoint union of the sets Qx and addition is associative,
∑

x∈P

∑

y∈Qx

f(y)dy =
∑

y∈Q

f(y)dy. ¤

Definition 4.2 The interval Riemann integral of a monotone map f : R → R on an
interval [a, b] is defined by ∫ b

a
f =

⊔↑

P∈P[a,b]

∑

x∈P

f(x)dx.

We sometimes denote
∫ b
a f by

∫ b
a f(x)dx. ¤

Proposition 4.3 For all continuous maps f ,g : R→ R and all real numbers α and β,
∫ a

a
f = 0,

∫ b

a
f +

∫ c

b
f =

∫ c

a
f ,

∫ b

a
(αf + βg) = α

∫ b

a
f + β

∫ b

a
g.
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Proof The first equation follows from the fact that {[a, a]} is the essentially the only
partition of [a, a]. If P and Q are partitions of [a, b] and [b, c] respectively, then P ∪ Q is a
partition of [a, c]. Conversely, if R is partition of [a, c], then there are partitions P and Q of
[a, b] and [b, c] respectively such that P ∪Q refines R. Therefore

∫ b

a
f +

∫ c

b
f =

⊔↑

P∈P[a,b]

∑

x∈P

f(x)dx +
⊔↑

Q∈P[b,c]

∑

y∈Q

f(y)dy

=
⊔↑

P∈P[a,b]

⊔↑

Q∈P[b,c]

∑

x∈P

f(x)dx +
∑

y∈Q

f(y)dy

=
⊔↑

P∈P[a,b]

⊔↑

Q∈P[b,c]

∑

z∈P∪Q

f(z)dz

=
⊔↑

R∈P[a,c]

∑

z∈R

f(z)dz

=
∫ c

a
f .

We omit the routine proof of the third equation. ¤
Clearly,

∫ b
a f depends only on the values that f assumes on I[a, b].

Theorem 4.4 For every interval [a, b], the integration map

f 7→
∫ b

a
f : [I[a, b] →R] → R

is Scott continuous.
Proof Let F be a directed subset of the domain [I[a, b] →R]. Then

b∫

a

⊔↑F =
⊔↑

P

∑

x∈P

(⊔↑F
)

(x)dx

=
⊔↑

P

∑

x∈P


 ⊔↑

f∈F
f(x)


 dx

=
⊔↑

P

∑

x∈P

⊔↑

f∈F
f(x)dx

=
⊔↑

P

⊔↑

f∈F

∑

x∈P

f(x)dx

=
⊔↑

f∈F

⊔↑

P

∑

x∈P

f(x)dx

=
⊔↑

f∈F

b∫

a

f . ¤
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Any dense subset A of [a, b] clearly induces a basis

B = {[x, y]|x ≤ y in A}
of I[a, b].

Lemma 4.5 Let [a, b] be an interval, let B be any basis of I[a, b] induced by a dense subset
of [a, b], and denote by PB[a, b] the partitions of [a, b] consisting of basis elements. Then for
any continuous function f : I[a, b] →R,

∫ b

a
f =

⊔↑

Q∈PB [a,b]

∑

x∈Q

f(x)dx.

Proof Let u ¿ ∫ b
a f . It suffices to conclude that

u v
⊔↑

P∈PB [a,b]

∑

x∈P

f(x)dx.

Let P = {x1, . . . ,xn} ∈ P[a, b] such that u ¿ ∑
x∈P f(x)dx. W.l.o.g., we can assume that

[a, b] has non-zero diameter and that P consists of intervals of non-zero diameter. Then for
each x ∈ P there is some x′ ¿ x in B such that already

u ¿
∑

x∈P

f(x′)dx

because f , addition, and scalar multiplication are continuous. Wlog we can assume that only
successive elements of the sequence x′1, . . . ,x′n don’t overlap, because otherwise we can shrink
the intervals x′i in such a way that that the above inequality still holds. Then the unique
partition Q of [a, b] consisting of intervals of non-zero diameter with the end-points of the
intervals x′1, . . . ,x′n is of the form {y1, z1,y2, . . . , zn−1,yn} with

1. zi = x′i t x′i+1 for 1 ≤ i ≤ n

2. (a) y1 u z1 = x′1 and zn−1 u yn = x′n
(b) zi−1 u yi u zi = x′i for 1 < i < n.

We claim that ∑

x∈P

f(x)dx v
∑

y∈Q

f(y)dy,

which implies that
u ¿

⊔↑

Q∈PB [a,b]

∑

x∈Q

f(x)dx,

by transitivity, and concludes the proof. For notational simplicity and w.l.o.g., we prove the
claim for the case P = {x1,x2}. In this case the claim reduces to

f(x′1)dx1 + f(x′2)dx2 v f(y1)dy1 + f(z1)dz1 + f(y2)dy2,

and is proved by

f(x′1)dx1 + f(x′2)dx2

= f(x′1)(dy1 + dx1 − dy1) + f(x′2)(dx2 − dy2 + dy2)

= f(x′1)dy1 + f(x′1)(dx1 − dy1) + f(x′2)(dx2 − dy2) + f(x′2)dy2

v f(y1)dy1 + f(z1)(dx1 − dy1) + f(z1)(dx2 − dy2) + f(y2)dy2

= f(y1)dy1 + f(z1)dz1 + f(y2)dy2. ¤
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Remark 4.6 Moore [33] handles integration by considering sums which are essentially inter-
val Riemann sums for partitions consisting of n intervals of the same length, but he restricts
his definition to rational functions. The integrand is assumed to be monotone w.r.t. inclusion
and continuous w.r.t. the Hausdorff metric on intervals. Since the Hausdorff metric induces
the Lawson topology on R, the integrand is Scott continuous [24, 28]. Therefore Lemma 4.5
above and Theorem 4.11 below show that our definition generalizes that of Moore to all Scott
continuous functions, and Theorem 4.7 below shows that our definition captures all Riemann
integrable functions. ¤

Since If(x) = [inf f(x), sup f(x)], the end-points of an interval Riemann sum are given
by lower and upper Darboux sums respectively:

∑

x∈P

If(x)dx =

[∑

x∈P

inf f(x)dx,
∑

x∈P

sup f(x)dx

]
.

Therefore ∫ b

a
If =

[∫ b

a
f,

∫ b

a
f

]
=

{∫ b

a
f

}
,

where the symbols
∫ b
a and

∫ b
a denote lower and upper Riemann integrals respectively. Any

continuous map f : R → R has infinitely many continuous extensions to R → R. Recall
that the extension If is characterized as the greatest one. Theorem 4.7 below shows that the
above equation generalizes to any Riemann integrable function. This entails that interval Rie-
mann integration, even when restricted to Scott continuous functions, captures all Riemann
integrable functions.

Theorem 4.7 Let f : R → R be Riemann integrable on compact intervals [a, b], and let
f̂ : R→ R be the Scott continuous function defined in Theorem 3.6. Then

∫ b

a
f̂ =

{∫ b

a
f

}
.

Proof Let g and g be defined as in Theorem 3.6. Then
∫ b

a
f̂ =

⊔↑

P∈P[a,b]

∑

x∈P

f̂(x)dx

=
⊔↑

P∈P[a,b]

∑

x∈P

[inf g(x), sup g(x)]dx

=
⊔↑

P∈P[a,b]

[∑

x∈P

inf g(x)dx,
∑

x∈P

sup g(x)dx

]

=

[
sup

P∈P[a,b]

∑

x∈P

inf g(x)dx, inf
P∈P[a,b]

∑

x∈P

sup g(x)dx

]

=

[∫ b

a
g,

∫ b

a
g

]

=

{∫ b

a
f

}
,

because g and g agree with f at every point of continuity of f and hence are Riemann
integrable, with the same (lower and upper) integrals as f . ¤
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We now show that the above theorem holds with the greatest continuous extension f̂ of
f replaced by any continuous extension f̃ whatsoever.

Lemma 4.8 For every continuous function f : R → R there is a greatest continuous func-
tion f̂ : R → R such that

f|MaxR = f̂|MaxR,

given by
f̂(x) =

l
f(↑↑x ∩MaxR)

Proof We first restrict f to MaxR ∼= R, and then we find the greatest continuous extension
to R by an application of Lemma 3.4, obtained by a formula which is essentially the same as
the above one. ¤

Lemma 4.9 For any continuous f : R→ R,
∫ b

a
f =

∫ b

a
f̂ .

Proof
∫ b
a f v ∫ b

a f̂ because f v f̂ . For the other direction, we first prove that

f̂(x)dx v
∫ x

x
f

for all x ∈ R. Let b ¿ f̂(x)dx. It suffices to conclude that

b v
∫ x

x
f .

Since f̂(x) =
d

r∈xf({r}), by Lemma 4.8, we have that b ¿ f({r})dx for all r ∈ x. By
continuity of f , for each r ∈ x there is a wr ¿ {r} such that already b ¿ f(wr)dx. Since the
interiors of the intervals wr form an open cover of the compact interval x, there is a finite
subset C of {wr}r∈x such that the interiors of the members of C already cover x. Since the
way-below order of R is multiplicative, b ¿ d

y∈C f(y)dx . Now, there is a unique partition
P of x, consisting of non-singleton intervals, such that the set of end-points of elements of P
is the set of end-points of elements of C belonging to x, together with the two points x and x.
Since

f(z) v
l

y∈P,zvy

f(y),

we have that l

z∈C
f(z) v

l

z∈C

l

y∈P,zvy

f(y) =
l

y∈P

f(y).

Hence b ¿ d
y∈P f(y)dx. But

l

y∈P

f(y)dx v
∑

z∈P

f(z)dz,

because l

y∈P

f(y)dx =
[
min
y∈P

f(y)dx, max
y∈P

f(y)dx
]
,
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and hence the weighted average
∑

z∈P f(z)dz has to be contained in the latter interval. There-
fore b ¿ ∑

z∈P f(z)dz v ∫ x
x f , which yields b v ∫ x

x f , as desired. Finally, we have that

∫ b

a
f̂ =

⊔↑

P∈P[a,b]

∑

x∈P

f̂(x)dx v
⊔↑

P∈P[a,b]

∑

x∈P

∫ x

x
f

=
⊔↑

P∈P[a,b]

∫ b

a
f =

∫ b

a
f ,

which concludes the proof. ¤

Theorem 4.10 The interval Riemann integral of a continuous function f : R→ R depends
only on the value that f assumes at maximal elements, in the sense that for any continuous
function g : R→ R,

f|Max(R) = g|Max(R) implies
∫ b

a
f =

∫ b

a
g.

Proof By Lemma 4.8, f|Max(R) = g|Max(R) implies f̂ = ĝ. Therefore the result follows
from Lemma 4.9. ¤

Corollary 4.11 If f : R → R is Riemann integrable on compact intervals and f̃ : R → R
is any Scott continuous map agreeing with f at points of continuity of f , then

∫ b

a
f̃ =

{∫ b

a
f

}
.

Proof By Theorem 4.7, we know that this is true for the greatest such f̃ , namely f̂ .
Therefore the result follows from Theorem 4.10. ¤
The significance of Theorems 4.10 and Corollary 4.11 is that sometimes it is easy to obtain a
Real PCF program for an extension of a function f but it is difficult or undesirable to obtain a
program for its greatest continuous extension. For instance, the distributive law does not hold
for the canonical extensions of addition and multiplication, so that two different definitions
of the same function can give rise to two different extensions and two different programs [33].

Finally, we have the following characterization of interval Riemann integration via ordinary
lower and upper Riemann integration:

Theorem 4.12 Let s : R → R be the singleton embedding and f : R → R be any Scott
continuous map. Then ∫ b

a
f =

[∫ b

a
f ◦ s,

∫ b

a
f ◦ s

]
.

Proof The proof of Theorem 4.7, with g = f ◦ s and g = f ◦ s shows that this is the case if
f is the greatest extension of its restriction f ◦s. Then the result follows from Theorem 4.10. ¤
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4.2 Multiple interval Riemann integrals

A partition of a hyper-cube
~a = (a1, . . . ,an) ∈ Rn

is a cartesian product
~P = P1 × · · · × Pn

of partitions of a1, . . . ,an respectively. We denote the set of partitions of ~a by P~a. Refine-
ments are defined coordinatewise. The volume of an n-dimensional hyper-cube ~x is

d~x = dx1 · · ·dxn.

Definition 4.3 Let f : Rn → R be a map and ~a be an n-dimensional hyper-cube. A
multiple interval Riemann sum of f on ~a is a sum of the form

∑

~x∈~P

f(~x)d~x for ~P ∈ P~a. ¤

Definition 4.4 The multiple interval Riemann integral of a monotone map f : Rn →R
on a hyper-cube ~a is defined by

∫

~a
f =

⊔↑

~P∈P~a

∑

~x∈~P

f(~x)d~x. ¤

For n = 1 this definition reduces to our previous definition:
∫

(a)
f =

∫ a

a
f .

Theorem 4.13 (Fubini’s Rule) For every natural number n > 1, every continuous func-
tion f : Rn →R, and every n-dimensional hyper-cube ~a,

∫

~a
f =

∫

(a1)

(∫

~a′
f(x)d~x′

)
dx1,

where ~a′ = (a2, . . . ,an) and ~x′ = (x2, . . . ,xn).
Proof For notational simplicity and without essential loss of generality, we prove the claim
for n = 2, which corresponds to the inductive step of the claim for arbitrary n by induction
on n:

∫

(a,b)
f =

⊔↑

P×Q∈P(a,b)

∑

(x,y)∈P×Q

f(x,y)d(x,y)

=
⊔↑

P∈Pa

⊔↑

Q∈Pb

∑

x∈P

∑

y∈Q

f(x,y)dxdy

=
⊔↑

P∈Pa

∑

x∈P


 ⊔↑

Q∈Pb

∑

y∈Q

f(x,y)dy


 dx

=
∫

(a)
λx

∫

(b)
λyf(x,y). ¤
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4.3 A supremum operator

In this section we define a supremum operator, which is used in Section 5.2 to obtain a fixed-
point definition of interval Riemann integration. The presentation follows the same pattern
as Section 4.1, and therefore we omit the proofs which are reworkings of previous proofs.

Lemma 4.14 Let f : R → R be a monotone map (w.r.t. the information order). If a
partition Q of an interval [a, b] refines a partition P then

max
x∈P

f(x) v max
x∈Q

f(x).

Definition 4.5 For a function f : R→ R we write

sup
[a,b]

f = sup
x∈[a,b]

f(x).

The supremum of a monotone map f : R→ R on an interval [a, b] is defined by

sup
[a,b]

f =
⊔↑

P∈P[a,b]

max
x∈P

f(x). ¤

Proposition 4.15 For all continuous maps f ,g : R→ R and all real numbers α and β,

sup
[a,a]

f = f(a),

max(sup
[a,b]

f , sup
[b,c]

f) = sup
[a,c]

f ,

sup
[a,b]

max(αf , βg) = max(α sup
[a,b]

f , β sup
[a,b]

g).

Clearly, sup[a,b] f depends only on the values that f assumes on I[a, b].

Theorem 4.16 For every interval [a, b], the supremum map

f 7→ sup
[a,b]

f : [I[a, b] →R] → R

is continuous.

Lemma 4.17 Let [a, b] be an interval, and let B be any basis of I[a, b]. Then for any
continuous function f : I[a, b] → R,

sup
[a,b]

f =
⊔↑

Q∈PB [a,b]

max
x∈Q

f(x).

Clearly, for f : R→ R continuous we have that

max
x∈P

If(x) =
[
max
x∈P

inf f(x),max
x∈P

sup f(x)
]
.

Therefore

sup
[a,b]

If =

{
sup
[a,b]

f

}
.
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Lemma 4.18 For any continuous f : R→ R,

sup
[a,b]

f = sup
[a,b]

f̂ .

Theorem 4.19 The supremum of a continuous function f : R → R depends only on the
value that f assumes at maximal elements.

Corollary 4.20 If f : R → R is continuous and f : R → R is a continuous extension of f
then

sup
[a,b]

f =

{
sup
[a,b]

f

}
.

An infimum operator inf is defined similarly, by replacing max by min.

5 Integration in Real PCF

In Subsection 5.1 we extend Real PCF with a primitive for interval Riemann integration,
and we establish computational adequacy for the extension. In Subsection 5.2 we show how
to recursively define integration from the supremum operator. In Subsection 5.3 we extend
Real PCF with a primitive for supremum, and we establish computational adequacy for the
extension. Finally, in Subsection 5.4 we discuss universality of Real PCF extended with
integration or supremum.

5.1 Real PCF extended with interval Riemann integration

Again, for simplicity and without essential loss of generality, we restrict ourselves to the unit
interval. Clearly, the map

∫ 1
0 : [I → R] → R restricts to [I → I] → I. We denote the

restriction by
∫
.

The programming language Real PCF
∫

Instead of introducing integration as a constant, we introduce it as a construction. This
treatment of primitive operations is taken from Gunter [29]. We could treat all primitive
operations in this way, as he does, but we treat only integration in this way, for simplicity.

Definition 5.1

1. Real PCF
∫

is Real PCF extended by the following term-formation rule:

If Y : I is a term and x : I is a variable, then
∫

Y dx : I is a term, with the
same free variables as Y , except for x, which becomes bound. Terms of this
form are called integrals, whereas Y is called the integrand.

2. The meaning of the term
∫

Y dx in an environment ρ is
∫

f , where f is the meaning of
λx.Y in ρ. ¤

Convention 5.1 We denote α-congruence by ≡. Following Barendregt [4], we identify α-
congruent terms, and we adopt the inductive definition of substitution given in loc. cit.,
extended by the rules
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• c[α := M ] ≡ c for any constant c.

• (
∫

Y dx)[α := M ] ≡ (
∫

Y [α := M ]dx) provided α 6≡ x.

• (
∫

Y dx)[x := M ] ≡ (
∫

Y dx).

Notice that this definition assumes the so-called “[bound] variable convention” in order to
omit the cumbersome proviso which prevents the capture of free variables [3]. ¤

Operational semantics

Recall that ⊕ denotes binary average, which is a Real PCF definable operation.

Lemma 5.2 For any continuous map f : I → I,
∫

consa ◦ f = consa
(∫

f
)

,

∫
f =

∫
f ◦ consL ⊕

∫
f ◦ consR.

Proof The first equation is linearity. For the second equation we have
∫

f =
∫ 1

0
f

=
∫ 1

2

0
f +

∫ 1

1
2

f

=
∫ 1

0
f

(
x
2

)
1
2
dx +

∫ 1

0
f

(
x+1

2

)
1
2
dx

=
∫

f ◦ consL ⊕
∫

f ◦ consR. ¤

Definition 5.2 The immediate reduction rules for integration are:

1. (Production)
∫

Y dx→ ∫
Zdx if Y → Z,

2. (Output)
∫

consaY dx→ consa (
∫

Y dx),

3. (Input)
∫

Y dx→ ∫
YLdx ⊕ ∫

YRdx,

where
Ya ≡ Y [x := consax]. ¤

Intuitively, the output rule produces partial output, the input rule supplies partial input, and
the production rule partially evaluates the integrand (with no input or with the partial input
supplied by the input rule in previous reduction steps).
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Computational adequacy

Lemma 5.3 For every natural number n define a map
∫ (n) : [I → I] → I by

∫ (n)

f =
2n∑

k=1

f
([

k − 1
2n

,
k

2n

])
1
2n

.

Then
∫ (n) is continuous, and ∫

f =
⊔↑

n≥0

∫ (n)

f .

Proof The right-hand side of the equation can be expressed as

⊔↑

n≥0

∑

y∈Qn

f(y)dy,

where
Qn =

{[
k − 1
2n

,
k

2n

]∣∣∣∣ 1 ≤ k ≤ 2n
}

.

Let Dn = {k/2n|0 ≤ k ≤ 2n}. Then
⋃

n≥0 Dn is the set of dyadic numbers, which is dense in
[0, 1]. Hence intervals with distinct dyadic end-points form a basis of I[0, 1], say B. Moreover,
the end-points of the intervals in Qn are contained in Dn. Hence for every partition P ∈
PB[0, 1] there is some n such that Qn refines P . Therefore the result follows from Lemma 4.5.

¤

Lemma 5.4 For every natural number n,

∫ (0)

f = f(⊥),
∫ (n+1)

f =
∫ (n)

f ◦ consL ⊕
∫ (n)

f ◦ consR.

Proof For the first equation we have

∫ (0)

f =
20∑

k=1

f
([

k − 1
20

,
k

20

])
1
20

= f([0, 1]) = f(⊥).
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For the second equation we have

∫ (n+1)

f =
2n+1∑

k=1

f
([

k − 1
2n+1

,
k

2n+1

])
1

2n+1

=
2n∑

k=1

f
([

k − 1
2n+1

,
k

2n+1

])
1

2n+1
+

2n+1∑

k=2n+1

f
([

k − 1
2n+1

,
k

2n+1

])
1

2n+1

=
1
2

2n∑

k=1

f
([

k − 1
2n+1

,
k

2n+1

])
1
2n

+
1
2

2n∑

k=1

f
([

(k + 2n)− 1
2n+1

,
k + 2n

2n+1

])
1
2n

=
2n∑

k=1

f




[
k−1
2n , k

2n

]

2


 1

2n
⊕

2n∑

k=1

f




[
k−1
2n , k

2n

]
+ 1

2


 1

2n

=
∫ (n)

f
(

x
2

)
dx⊕

∫ (n)

f
(

x + 1
2

)
dx

=
∫ (n)

f ◦ consL ⊕
∫ (n)

f ◦ consR. ¤

As a corollary, we have that for every n there is a program in Real PCF (without the integra-
tion primitive) defining

∫ (n). But, in order to establish computational adequacy, it will prove
simpler to introduce

∫ (n) as a primitive construction.
Definition 5.3

1. Real PCF
∫ (n)

is Real PCF
∫

extended with a constant Ωσ : σ for each type σ and the
following term-formation rule for each natural number n:

If Y : I is a term and x : I is a variable, then
∫ (n) Y dx : I is a term, with the

same free variables as Y , except for x, which becomes bound.

2. The meaning of Ωσ is the bottom element of the domain of interpretation of σ.

3. The meaning of
∫ (n) Y dx in an environment ρ is

∫ (n) f , where f is the meaning of λx.Y
in ρ.

4. There is no reduction rule for Ωσ.

5. The immediate reduction rules for
∫ (n) are:

(a) (Production)
∫ (0) Y dx→ ∫ (0) Zdx if Y → Z,

(b) (Output)
∫ (0) consaY dx→ consa

(∫ (0) Y dx
)
,

(c) (Input)
∫ (n+1) Y dx→ ∫ (n) YLdx ⊕ ∫ (n) YRdx. ¤

Definition 5.4 A sublanguage of a language L is a subset of L-terms which is closed under
reduction. ¤

The following lemma is immediate:

Lemma 5.5 If every L-term is computable, so is every term of any sublanguage of L.
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Thus, in order to prove that every term of Real PCF
∫

is computable it suffices to prove that

every term of Real PCF
∫ (n)

is computable.

Definition 5.5 Let 4 be the least relation on terms such that:

1. If M : σ then Ωσ 4 M .

2. If Y 4 Y ′ : I then
∫ (n) Y dx 4

∫
Y ′dx and also

∫
Y dx 4

∫
Y ′dx.

3. M 4 M .

4. If M 4 M ′ : σ → τ and N 4 N ′ : σ, then (MN) 4 (M ′N ′).

5. If M 4 M ′ are terms (of the same type) then λα.M 4 λα.M ′. ¤

This relation turns out to be reflexive and transitive, which justifies the notation, but we
don’t need this fact.

The following lemma is analogous to Lemma 3.2 of [34].

Lemma 5.6 If M 4 N and M → M ′ then M ′ 4 N ′ and N → N ′ for some N ′.

This situation is summarized by the diagram below:

M 4 N

M ′
?

4 N ′
?

.....

Proof By structural induction on M , according to why M → M ′. ¤

Corollary 5.7 If M 4 N and M →∗ M ′ then M ′ 4 N ′ and N →∗ N ′ for some N ′.
Proof By induction on the length of the reduction. ¤

Corollary 5.8 For each natural number n and all Y : I and x : I,

Eval

(∫ (n)

Y dx

)
⊆ Eval

(∫
Y dx

)
.

Proof Immediate consequence of Corollary 5.7, noticing that, by definition of 4, if one
has that consaZ 4 Z ′ then Z ′ has to be of the form consaZ ′′. ¤

The term Ωσ is trivially computable.

Lemma 5.9 For every n, if Y : I is computable so is
∫ (n) Y dx for all x : I.

Proof By induction on n.

Base: Since the terms
∫ (0) Y dx and Y [x := ΩI ] have the same meaning in any environment,

namely
∫ (0) f = f(⊥) where f is the meaning of λx.Y , and since Y [x := ΩI ] is computable

as it is an instantiation of a computable term by computable terms, it suffices to conclude
that Eval(Y [x := ΩI ]) ⊆ Eval(

∫ (0) Y dx). Assume that Y [x := ΩI ] →∗ consaZ. One easily
checks by structural induction that Y [x := ΩI ] 4 Y . Hence, by Corollary 5.7 we conclude
that Y →∗ Z ′ for some Z ′ with consaZ 4 Z ′. By definition of 4, Z ′ has to be of the form
consaZ ′′. Hence, by some applications of the production rule followed by an application of
the output rule,

∫ (0) Y dx→∗ ∫ (0) consaZ ′′dx→ consa(
∫ (0) Z ′′dx).
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Induction step: If Y is computable so is Ya for any a. Hence, by the induction hypothesis,∫ (n) Yadx is computable. Since ⊕ is a Real PCF term, it is computable. By definition of
computability, it follows that

∫ (n) YLdx ⊕ ∫ (n) YRdx is computable. Therefore
∫ (n+1) Y dx is

computable, because every reduction from
∫ (n+1) Y dx factors through

∫ (n) YLdx⊕ ∫ (n) YRdx
via the input rule, and

∫ (n+1) Y dx has the same meaning as
∫ (n) YLdx ⊕ ∫ (n) YRdx, in any

environment. ¤

Lemma 5.10 Every Real PCF
∫ (n)

term is computable.
Proof Extend the proof of Lemma 35 of [21, page 109] by including Lemma 5.9 as one of
the inductive steps. ¤

Theorem 5.11 (Computational Adequacy) Every Real PCF
∫

term is computable.
Proof Lemmas 5.3, Corollary 5.8, and Lemmas 5.10 and 5.5. ¤

5.2 A fixed-point definition of integration

It is natural to ask whether the integration operator, added in Section 5.1 as primitive, is
already recursively definable in Real PCF.

Let D = [[I → I] → I]. Then the second equation of Lemma 5.2 leads one to consider
the map G : D → D defined by

G(F )(f) = F (f ◦ consL)⊕ F (f ◦ consR).

Thus the integration operator
∫

is a fixed point of G. However, the least fixed point is the
bottom element of D.

Peter Freyd suggested that if we restrict ourselves to the subspace D′ ⊆ D of functions
F ∈ D such that

inf f ≤ F (f) ≤ sup f ,

then G restricts to a map G′ : D′ → D′, and
∫

is the least fixed point of G′. We use this idea
in a modified form, obtaining

∫
directly as the least fixed point of a function H : D → D.

Define a map j : [0, 1]3 → [0, 1] by

j(x, y, z) = max(x,min(y, z)).

Then, given a ≤ b, the map g : [0, 1] → [0, 1] defined by

g(x) = j(a, x, b)

is idempotent,
a ≤ f(x) ≤ b,

and
g(x) = x iff a ≤ x ≤ b.

Also, define a function H : D → D by

H(F )(f) = j (inf f , F (f ◦ consL)⊕ F (f ◦ consR), sup f) .
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Lemma 5.12 For every continuous function f : I → I,

Hn(⊥)(f) =
∫ (n)

f̂ ,

where f̂ is defined as in Lemma 4.8.
Proof By induction on n. For the base case use the fact that f̂(⊥) = j(inf f ,⊥, sup f). ¤

Proposition 5.13
∫

is the least fixed point of H.
Proof Immediate consequence of Lemmas 5.3 and 5.12. ¤

Thus, if the supremum operator is definable, so is the integration operator. But the
supremum operator is not definable. The proof is postponed to Subsection 5.4.

5.3 Real PCF extended with supremum

This subsection follows the same pattern as Subsection 5.1. Due to this reason, we omit the
proofs which are reworking of proofs given earlier. Again, for simplicity and without essential
loss of generality, we restrict ourselves to the unit interval. Clearly, the map sup[0,1] : [I →
R] →R restricts to [I → I) → I. We denote the restriction by sup.

Definition 5.6 Real PCFsup is Real PCF extended with a construction supx Y , as in Defi-
nition 5.1, denoting the operation sup : [I → I] → I. ¤

Lemma 5.14 For any continuous map f : I → I,
sup consa ◦ f = consa (sup f) ,

sup f = max (sup f ◦ consL, sup f ◦ consR) .

Definition 5.7 The immediate reduction rules for supremum are:

1. (Production) supx Y → supx Z if Y → Z,

2. (Output) supx consaY → consa (supx Y ),

3. (Input) supx Y → max (supx YL, supx YR),

where
Ya ≡ Y [x := consax]. ¤

Notice that these are the reduction rules for
∫

with
∫

and ⊕ replaced by sup and max
respectively. We obtain the following similar results, whose proofs are omitted because they
are similar too:

Lemma 5.15 For every natural number n define a map sup(n) : [I → I] → I by

sup(n)f =
2n

max
k=1

f
([

k − 1
2n

,
k

2n

])
.

Then sup(n) is continuous, and
sup f =

⊔↑

n≥0

sup(n)f .
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Lemma 5.16 For every natural number n,

sup(0)f = f(⊥),

sup(n+1)f = max
(
sup(n)f ◦ consL, sup(n)f ◦ consR

)
.

As a corollary, we have that for every n there is a Real PCF program defining sup(n). But,
as we did for integration, we add the partial supremum operators sup(n) as primitive, and we
conclude that:

Theorem 5.17 (Computational Adequacy) Every Real PCFsup term is computable.

The operation inf is definable from sup by

inf f = 1− sup
x

(1− f(x)),

so there is no need to include it as primitive too.

Corollary 5.18 The integration operator is definable in Real PCFsup.
Proof The function H of Lemma 5.12 is Real PCFsup definable. ¤

Corollary 5.19 For every natural number n there is a program in Real PCF extended with
either integration or supremum which computes the multiple integration operator

∫
: [In →

I] → I of order n.
Proof (Since PCF does not have cartesian products, we have to use curried maps.) Our
primitive or program for integration takes care of the case n = 1. Fubini’s Rule (Theorem 4.13)
can be read as a definition of a program for the case n + 1 from a program for the case n. By
the computational adequacy theorems, these programs indeed compute multiple integrals of
order n. ¤
This application of the computational adequacy theorems shows that computational ade-
quacy is a powerful property. In fact, it allows us to derive correct programs from analytical
results, in a representation-independent fashion. Of course, this is precisely the idea behind
denotational semantics.

5.4 Universality of Real PCF extended with integration or supremum

Although Theorem 2.6 implies that sup is definable in Real PCF extended with ∃, we don’t
know a neat fixed-point definition of sup.

Proposition 5.20 The existential quantification operator ∃ is definable in Real PCF ex-
tended with sup.
Proof For D ∈ {N , T }, define continuous maps

D
rD

¿
sD

I

by

sN (n) = if n = 0 then 0 else consR(sN (n− 1))

rN (x) = if x <⊥ 1/4 then 0 else rN (tailR(x)) + 1,

sT (t) = if t then 1 else 0

rT (x) = if x <⊥ 1/2 then false else true
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Then (sD, rD) is a section-retraction pair. This is immediate for D = T . For D = N , we
prove by induction on n that rN ◦ sN (n) = n. If n = ⊥ or n = 0 this is immediate. For the
inductive step we have that

rN ◦ sN (n + 1) = rN (consR(sN (n))

= rN (tailR ◦ consR(sN (n))) + 1

= rN (sN (n)) + 1

= n + 1 by the induction hypothesis.

It follows that the diagram below commutes:

[I → I]
sup−−−→ I

rN→sT
x

yrT

[N → T ] −−−→
∃

T

In fact, let p ∈ [N → T ] and define f : I → I by

f = (rN → sT )(p) = sT ◦ p ◦ rN .

If there is some n such that p(n) = true, then there is some x such that f(x) = 1, namely
x = sN (n), and in this case we have that sup f = 1. If p(⊥) = false, then f(⊥) = 0, and in
this case we have that sup f = 0. Therefore ∃ is definable in Real PCF extended with sup. ¤

Corollary 5.21 Real PCF extended with sup is universal.

This shows that sup is not Real PCF definable, because ∃ is not Real PCF definable. We
don’t know whether Real PCF extended with integration is universal. Moreover, we don’t
know whether integration is definable in Real PCF with no extensions, but we conjecture that
this is not the case.

For applications of Real PCF to real analysis, it seems more natural to include the supre-
mum operator as a primitive operation than to include the existential quantification operator.
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