
Operational domain theory and topology of
a sequential programming language

Mart́ın Escard́o Ho Weng Kin
School of Computer Science, University of Birmingham, UK, revised 17th October 2005

Abstract
A number of authors have exported domain-theoretic

techniques from denotational semantics to the operational
study of contextual equivalence and preorder. We further
develop this, and, moreover, we additionally exporttopo-
logical techniques. In particular, we work with an opera-
tional notion of compact set and show that total programs
with values on certain types are uniformly continuous on
compact sets of total elements. We apply this and other con-
clusions to prove the correctness of non-trivial programs
that manipulate infinite data. What is interesting is that the
development applies tosequentialprogramming languages.

1. Introduction
Domain theory and topology in programming language

semantics have been applied to manufacture and studyde-
notationalmodels, e.g. the Scott model of PCF [23]. As is
well known, for a sequential language like this, the match of
the model with the operational semantics is imprecise: com-
putational adequacy holds but full abstraction fails [21].

The main achievement of the present work is a recon-
ciliation of a good deal of domain theory and topology
with sequential computation. This is accomplished by side-
stepping denotational semantics and reformulating domain-
theoretic and topological notions directly in terms of pro-
gramming concepts, interpreted in an operational way.

Regarding domain theory, we replace directed sets by
rational chains, which we observe to be equivalent to pro-
grams defined on a “vertical natural numbers” type. Many
of the classical definitions and theorems go through with
this modification. In particular, (1) rational chains have
suprema in the contextual order, (2) programs of functional
type preserve suprema of rational chains, (3) every element
(closed term) of any type is the supremum of a rational
chain of finite elements, (4) two programs of functional
type are contextually equivalent iff they produce a contex-
tually equivalent result for every finite input. Moreover, we
have an SFP-style characterization of finiteness using ratio-
nal chains of deflations, a Kleene-Kreisel density theorem
for total elements, and a number of continuity principles
based on finite elements.

Regarding topology, we define open sets of elements
via programs with values on a “Sierpinski” type, and
compact sets of elements via Sierpinski-valued universal-
quantification programs. Then (1) the open sets of any type
are closed under the formation of finite intersections and
rational unions, (2) open sets are “rationally Scott open”,
(3) compact sets satisfy the “rational Heine–Borel prop-
erty”, (4) total programs with values on certain types are
uniformly continuous on compact sets of total elements.

In order to be able to formulate certain specifications of
higher-type programs without invoking a denotational se-
mantics, we work with a “data language” for our program-
ming language, which consists of the latter extended with
first-order “oracles”. The idea is to have a more power-
ful environment in order to get stronger program specifi-
cations. We observe that program equivalence defined by
ground data contexts coincides with program equivalence
defined by ground program contexts, but the notion of total-
ity changes. (It is worth mentioning that the resulting data
language for PCF defines precisely the elements of games
models [1, 12], with the programming language capturing
the effective parts of the models; similarly, the resulting data
language for PCF extended with parallel-or and Plotkin’s
existential quantifier defines precisely the elements of the
Scott model, again with the programming language captur-
ing the effective part [21, 8].)

We illustrate the scope and flexibility of the theory by
applying our conclusions to prove the correctness of non-
trivial programs that manipulate infinite data. We take one
such example from [24]. In order to avoid having exact real-
number computation as a prerequisite, as in that reference,
we consider modified versions of the program and its spec-
ification that retain their essential aspects. We show that
the given specification and proof in the Scott model can be
directly understood in our operational setting.

Although our development is operational, we never in-
voke evaluation mechanisms directly. We instead rely
on known extensionality, monotonicity, and rational-chain
principles for contextual equivalence and order. Moreover,
with the exception of the proof of the density theorem, we
don’t perform syntactic manipulations with terms.

1

Related work.The idea that order-theoretic techniques
from domain theory can be directly understood in terms
of operational semantics goes back to Mason, Smith, Tal-
cot [15] and Sands (see Pitts [19] for references). Already
in [15], one can find, in addition to rational-chain princi-
ples, two equivalent formulations of an operational notion
of finiteness. One is analogous to our Definition 4.1 but uses
directed sets of closed terms rather than rational chains, and
the other is analogous to our Theorem 4.8. In addition to
redeveloping their formulations in terms of rational chains,
here we add a topological characterization (Theorem 4.15).

The idea that topological techniques can be directly un-
derstood in terms of operational semantics, and, moreover,
are applicable to sequential languages, is due to Escardó [8].
In particular, we have taken our operational notion of com-
pactness and some material about it from that reference.
The main novelty here is a uniform-continuity principle,
which plays a crucial role in the sample applications given
in Section 7. This is inspired by unpublished work by An-
drej Bauer and Escardó on synthetic analysis in (sheaf and
realizability) toposes.

The idea of invoking a data language to formulate
higher-type program specifications in a sequential opera-
tional setting is already developed in [8] and is related to
relative realizability [4] and TTE [27].

2. Preliminaries

The programming language.We work with a simply-
typed λ-calculus with function and finite-product types,
fixed-point recursion, and base typesNat for natural num-
bers andBool for booleans. We regard this as a program-
ming language under the call-by-name evaluation strat-
egy. In summary, we work with PCF extended with finite-
product types (see e.g. one of the references [10, 19]). Other
possibilities are briefly discussed in Section 8.

For clarity of exposition, we also include aSierpinski
base typeΣ and avertical-natural-numbersbase typeω,
although such types can be easily encoded in other existing
types if one so desires (e.g. via retractions). We have the
following term-formation rules for them:
(1) > : Σ is a term.
(2) If M : Σ andN : σ are terms then(if M then N) : σ

is a term.
(3) If M : ω is a term then(M + 1): ω, (M − 1) : ω, and

(M > 0) : Σ are terms.
The only value (or canonical form) of typeΣ is>, and the
values of typeω are the terms of the formM + 1. The
role of zero is played by divergent computations, and a term
(M > 0) can be thought of as a convergence test. The big-
step operational semantics for these constructs is given by
the following evaluation rules:

(i) If M ⇓ > andN ⇓ V then(if M then N) ⇓ V .

(ii) If M ⇓ N + 1 andN ⇓ V thenM − 1 ⇓ V .
(iii) If M ⇓ M ′ + 1 thenM > 0 ⇓ >.

For any typeσ, we define⊥σ = fixx.x, wherefix de-
notes the fixed-point recursion construct. In what follows,
if f : σ → σ is a closed term, we shall writefix f as an
abbreviation forfixx.f(x).

Oracles.We also consider the extension of the program-
ming language with the following term-formation rule:
(4) If Ω: N → N is any function, computable or not, and

N : Nat is a term, thenΩN : Nat is a term.
Then the operational semantics is extended by the rule:
(iv) If N ⇓ n andΩ(n) = m thenΩN ⇓ m.
We think of Ω as an external input ororacle, and of the
equationΩ(n) = m as a query with questionn and an-
swerm. Of course, the extension of the language with ora-
cles is no longer aprogramming language. We shall regard
it as adata languagein Section 6.

Underlying language for Sections 3–5.We take it to
be either (1) the programming language introduced above,
(2) its extension with oracles, (3) its extension with parallel
features, such as parallel-or and Plotkin’s existential quan-
tifier, or else (4) its extension with both oracles and paral-
lel features. The conclusions of those sections hold for the
four possibilities, at no additional cost. To emphasize that
a closed term doesn’t include oracles, we refer to it as a
program.

Notation for contextual equivalence and (pre)order.
We write M = N andM v N to denote (ground) con-
textual equivalence and order of terms of the same type.

Elements of a type.By anelementof a type we mean a
closed term of that type. We adopt usual set-theoretic nota-
tion for the elements of a type in the sense just defined. For
example, we writex ∈ σ andf ∈ (σ → τ) to mean thatx
is an element of typeσ andf is an element of typeσ → τ .

The elements ofΣ. The elements⊥ and> of Σ are con-
textually inequivalent and any element ofΣ is equivalent to
one of them. We think ofΣ as a type of results of observa-
tions or semidecisions, with> as “observable true” and⊥
as “unobservable false”.

The elements ofω. We denote by∞ the element
fixx.x + 1 of ω, and, by an abuse of notation, forn ∈ N
we write n to denote the elementsuccn(⊥) of ω, where
succ(x) = x + 1. The elements0, 1, 2, . . . , n, . . . ,∞ of ω
are all contextually inequivalent, and any element ofω is
contextually equivalent to one of them. Notice that the
equivalences0− 1 = 0, (x + 1)− 1 = x, (0 > 0) = ⊥ and
(x+1 > 0) = > hold forx ∈ ω. In particular,∞−1 = ∞
and(∞ > 0) = >.

Extensionality and monotonicity. Contextual equiva-
lence is a congruence: Iff = g andx = y thenf(x) = g(y)
for anyf, g ∈ (σ → τ) andx, y ∈ σ. Moreover, applica-
tion is extensional:f = g if f(x) = g(x) for all x ∈ σ.

2

Regarding the contextual order, we have that application is
monotone: Iff v g and x v y then f(x) v g(y) for
any f, g ∈ (σ → τ) andx, y ∈ σ. Moreover, it is order-
extensional:f v g if f(x) v g(x) for all x ∈ σ. Stan-
dard congruence, extensionality and monotonicity princi-
ples also hold for product types. Additionally,⊥σ is the
least element ofσ.

Rational chains. For any g ∈ (τ → τ) and any
h ∈ (τ → σ), the sequenceh(gn(⊥)) is increasing and
hash(fix g) as a least upper bound in the contextual order:

h(fix g) =
⊔

n h(gn(⊥)).

A sequencexn of elements of a typeσ is called arational
chain if there existg ∈ (τ → τ) andh ∈ (τ → σ) with
xn = h(gn(⊥)).

Proofs. The facts stated in this section are all well
known. The extensionality, monotonicity and rational-chain
principles follow directly from Milner’s construction [16].
Even though full abstraction of the Scott model fails for
sequential languages, proofs exploiting computational ad-
equacy are possible [13] (see [18]). Proofs using game se-
mantics can be found in [1, 12], and operational proofs can
be found in [19, 20] (where an earlier operational proof of
the rational-chains principle is attributed to Sands). For a
call-by-value untyped language, an operational proof of the
rational-chains principle was previously developed in [15].
Regarding the above description of the elements of the
vertical-natural-numbers type, a denotational proof using
adequacy is easy, and operational proofs are obtained ap-
plying [9] or [19].

3. Rational chains and open sets

Lemma 3.1. The sequence0, 1, 2, . . . , n, . . . in ω is a ra-
tional chain with least upper bound∞, and

l(∞) =
⊔

n l(n) for everyl ∈ (ω → σ).

Proof. n = succn(⊥) and∞ = fix succ.

Moreover, this is the “generic rational chain” with
“generic lub∞” in the following sense:

Lemma 3.2. A sequencexn ∈ σ is a rational chain if and
only if there existsl ∈ (ω → σ) such that for alln ∈ N,

xn = l(n), and hence such that
⊔

n xn = l(∞).

Proof. (⇒): Given g ∈ (τ → τ) andh ∈ (τ → σ) with
xn = h(gn(⊥)), recursively define

f(y) = if y > 0 then g(f(y − 1)).
Thenf(n) = gn(⊥) and hence we can takel = h ◦ f .

(⇐): Takeh = l andg(y) = y + 1.

Elements of functional type are “rationally continuous”
in the following sense:

Proposition 3.3. If f ∈ (σ → τ) andxn is a rational chain
in σ, then

1. f(xn) is a rational chain inτ , and
2. f(

⊔
n xn) =

⊔
n f(xn).

Proof. By Lemma 3.2, there isl ∈ (ω → σ) such that
xn = l(n). Then the definitionl′(y) = f(l(y)) and the
same lemma show thatf(xn) is a rational chain. By two ap-
plications of Lemma 3.1,f(

⊔
n xn) = f(l(∞)) = l′(∞) =⊔

n l′(n) =
⊔

n f(l(n)) =
⊔

n f(xn).

Corollary 3.4. For any rational chainfn in (σ → τ) and
anyx ∈ σ,

1. fn(x) is a rational chain inτ , and
2. (

⊔
n fn)(x) =

⊔
n fn(x).

Proof. Apply the proposition toF ∈ ((σ → τ) → τ) de-
fined byF (f) = f(x).

Definition 3.5. We say that a setU of elements of a typeσ
is openif there isχU ∈ (σ → Σ) such that for allx ∈ σ,

χU (x) = > ⇐⇒ x ∈ U .
If such an elementχU exists then it is unique up to con-
textual equivalence, and we refer to it as thecharacteristic
functionof U .

We say that a sequence of open sets inσ is a rational
chain if the corresponding sequence of characteristic func-
tions is rational in the function type(σ → Σ). The fol-
lowing says that the open sets of any type form a “rational
topology”:

Proposition 3.6. For any type, the open sets are closed un-
der the formation of finite intersections and rational unions.

Proof. Finite intersections:χ⋂
∅(x) = > andχU∩V (x) =

χU (x) ∧ χV (x), wherep ∧ q = if p then q.
Rational unions:BecauseU ⊆ V iff χU v χV , we have

that if l ∈ (ω → (σ → Σ)) and l(n) is the characteristic
function ofUn thenl(∞) =

⊔
n χUn = χ⋃

n Un
.

However, unless the language has parallel features, the
open sets don’t form topologies in the usual sense:

Proposition 3.7. The following are equivalent.
1. For every type, the open sets are closed under the for-

mation of finite unions.
2. There is(∨) ∈ (Σ× Σ → Σ) such that

p ∨ q = > ⇐⇒ p = > or q = >.

Proof. (⇑): χ⋃
∅(x) = ⊥ andχU∪V (x) = χU (x)∨χV (x).

(⇓): U = {(p, q) | p = >} andV = {(p, q) | q = >}
are open in the typeΣ × Σ because they have the first and
second projections as their characteristic functions. Hence
the setU ∪ V is also open, and so there isχU∪V such that
χU∪V (p, q) = > iff (p, q) ∈ U ∪ V iff (p, q) ∈ U or
(p, q) ∈ V iff p = > or q = >. Therefore(∨) = χU∪V

gives the desired conclusion.

3

Moreover, even if parallel features are included, closure
under arbitrary unions fails in general (but see [8, Chap-
ter 4]). The following easy observation says that elements
of functional type are continuous in the topological sense:

Proposition 3.8. For anyf ∈ (σ → τ) and any open subset
V of τ , the setf−1(V) = {x ∈ σ | f(x) ∈ V } is open inσ.

Proof. If χV ∈ (τ → Σ) is the characteristic function of
the setV thenχV ◦ f ∈ (σ → Σ) is that off−1(V).

The following says that the contextual order is the “spe-
cialization order” of the topology:

Proposition 3.9. For x, y ∈ σ, the relationx v y holds iff
x ∈ U impliesy ∈ U for every open subsetU of σ.

Proof. Ground contexts of typeΣ suffice to test the oper-
ational preorder — see e.g. [19, Remark 2.10]. Becausex
andy are closed terms, applicative contexts, i.e. character-
istic functions of open sets, suffice.

Open sets are “rationally Scott open”:

Proposition 3.10. For any open setU in a typeσ,
1. if x ∈ U andx v y theny ∈ U , and
2. if xn is a rational chain with

⊔
xn ∈ U , then there is

n ∈ N such that alreadyxn ∈ U .

Proof. By monotonicity and rational continuity ofχU .

4. Finite elements

We develop a number of equivalent formulations of a no-
tion of finiteness. Corollary 4.3 says that an elementb is
finite iff any attempt to buildb as the lub of a rational chain
already hasb as a building block. The official definition is a
bit subtler:

Definition 4.1. An elementb is called (rationally)finite if
for every rational chainxn with b v

⊔
n xn, there isn such

that alreadyb v xn.

The types of our language are “rationally algebraic” in
the following sense:

Theorem 4.2. Every element of any type is the least upper
bound of a rational chain of finite elements.

A proof of this will be given later in this section. For the
moment, we develop some consequences.

Corollary 4.3. An elementb is finite if and only if for every
rational chain xn with b =

⊔
n xn, there isn such that

alreadyb = xn.

Proof. (⇒): If b =
⊔

n xn then b v
⊔

n xn and hence
b v xn for somen. But, by definition of upper bound, we
also haveb w xn. Henceb = xn, as required.

(⇐): By Theorem 4.2, there is a rational chainxn of
finite elements withb =

⊔
n xn. By the hypothesis,b = xn

for somen, which shows thatb is finite.

The following provides a proof method for contextual
equivalence based on finite elements:

Proposition 4.4. f = g holds in(σ → τ) iff f(b) = g(b)
for every finiteb ∈ σ.

Proof. (⇒): Contextual equivalence is an applicative con-
gruence. (⇐): By extensionality it suffices to show that
f(x) = g(x) for anyx ∈ σ. By Theorem 4.2, there is a ra-
tional chainbn of finite elements withx =

⊔
n bn. Hence,

by two applications of rational continuity and one of the
hypothesis,f(x) = f(

⊔
n bn) =

⊔
n f(bn) =

⊔
n g(bn) =

g(
⊔

n bn) = g(x), as required.

Of course, the above holds with contextual equivalence
replaced by contextual order. Another consequence of The-
orem 4.2 is a third continuity principle:

Proposition 4.5. For anyf ∈ (σ → τ), anyx ∈ σ and any
finite c v f(x), there is a finiteb v x with c v f(b).

Proof. By Theorem 4.2,x is the lub of a rational chainbn

of finite elements. By rational continuity,c v
⊔

n f(bn).
By finiteness ofc, there isn with c v f(bn).

Corollary 4.6. If U is open andx ∈ U , then there is a finite
b v x such that alreadyb ∈ U .

Proof. The hypothesis gives> v χU (x), and so there is
some finiteb v x with > v χU (b) because> is finite. To
conclude, use maximality of>.

In order to prove Theorem 4.2, we invoke the following
concepts (see e.g. [2]):

Definition 4.7.
1. A deflationon a typeσ is an element of type(σ → σ)

that (i) is below the identity ofσ, and (ii) has finite
image modulo contextual equivalence.

2. A (rational) SFP structureon a typeσ is a rational
chainidn of idempotent deflations with

⊔
n idn = id,

the identity ofσ.
3. A type is (rationally)SFPif it has an SFP structure.

Theorem 4.8.
1. Each type of the language is SFP.
2. For any SFP structureidn on a typeσ, an element

b ∈ σ is finite if and only ifb = idn(b) for somen ∈ N.

4

In particular, becauseidn is idempotent,idn(x) is finite
and hence anyx ∈ σ is the lub of the rational chainidn(x)
and therefore Theorem 4.2 follows.

Proof. (1): Lemma 4.13 below.
(2)(⇒): The inequalityb w idn(b) holds becauseidn

is a deflation. For the other inequality, we first calculate
b = (

⊔
n idn)(b) =

⊔
n idn(b) using Corollary 3.4. Then

by finiteness ofb, there isn with b v idn(b).
(2)(⇐): To show thatb is finite, let xi be a rational

chain withb v
⊔

i xi. Thenb = idn(b) v idn(
⊔

i xi) =⊔
i idn(xi) by rational continuity ofidn. Becauseidn has

finite image, the set{idn(xi) | i ∈ N} is finite and hence
has a maximal element, which is its lub. That is, there is
i ∈ N with b v idn(xi). But idn(xi) v xi and hence
b v xi, as required.

We additionally have the following proposition.

Definition 4.9. By a finitary typewe mean a type that is
obtained fromΣ andBool by finitely many applications of
the product- and function-type constructions.

Proposition 4.10. SFP structuresidσ
n ∈ (σ → σ) can be

chosen for each typeσ in such a way that
1. idσ

n is the identity for every finitary typeσ,
2. idσ→τ

n (f)(x) = idτ
n(f(idσ

n(x))),
3. idσ×τ

n (x, y) = (idσ
n(x), idτ

n(y)).

Item 1 gives:

Corollary 4.11. Every element of any finitary type is finite.

The other two give the following consequence, whose
proof uses the fact that for any SFP structureidn on a
typeσ, if idn(x) = x thenidk(x) = x for anyk ≥ n.

Corollary 4.12. 1. If f ∈ (σ → τ) andx ∈ σ are finite
then so isf(x) ∈ τ .

2. If x ∈ σ andy ∈ τ are finite then so is(x, y) ∈ (σ×τ).

Proof. (1): If f andx are finite, then there arem andn
with f = idm(f) andx = idn(x). Let k = max(m,n).
By Proposition 4.10,f(x) = idk(f)(idk(x)) = idk(f(x)),
which shows thatf(x) is finite. (2): Similar.

To prove Theorem 4.8(1) and Proposition 4.10, we con-
struct, by induction onσ, programs

dσ : ω → (σ → σ).
For the base case, we define

dBool(x)(p) = p, dΣ(x)(p) = p,
dNat(x)(k) = if x > 0 then

if k == 0 then 0
else 1 + dNat(x− 1)(k − 1),

dω(x)(y) = if x > 0∧y > 0 then 1+dω(x−1)(y−1).
Notice that “x > 0” and “x > 0∧ y > 0” are terms of Sier-
pinski type and hence the “if” symbols that precede them

don’t have corresponding “else” clauses. For the induction
step, we define

dσ→τ (x)(f)(y) = dτ (x)(f(dσ(x)(y))),
dσ×τ (x)(y, z) = (dσ(x)(y),dτ (x)(z)).

Lemma 4.13. The rational chainidσ
n

def= dσ(n) is an SFP
structure onσ for every typeσ.

Proof. By induction onσ. For the base case, onlyσ = ω
is non-trivial. First show by induction onn that, for every
n ∈ N, dω(n)(y) = min(n, y). Hencedω(n) is idempo-
tent and below the identity, and has image{0, 1, . . . , n}.
Now calculate, fork ∈ N, dω(∞)(k) =

⊔
n dω(n)(k) =⊔

n min(n, k) = k. Hencedω(∞)(∞) =
⊔

k dω(∞)(k) =⊔
k k = ∞. By extensionality,dω(∞) is the identity. The

induction step is straightforward.

This proves Theorem 4.8(1). Proposition 4.10(1) is eas-
ily established by induction on finitary types, and conditions
(2) and (3) are immediate.

We now develop a topological characterization of the no-
tion of finiteness. We say that an open set inσ hasfinite
characteristicif its characteristic function is a finite element
of the function type(σ → Σ).

Lemma 4.14. For any open setU in σ and anyn ∈ N, let

U (n) def= id−1
n (U) = {x ∈ σ | idn(x) ∈ U}.

1. The open setU (n) ⊆ U has finite characteristic.
2. The set{U (n) | U is open inσ} has finite cardinality.
3. U has finite characteristic iffU = U (n) for somen.
4. The chainU (n) is rational andU =

⋃
n U (n).

Proof. (1) and (3): idn(χU)(x) = idn(χU (idn(x))) =
χU (idn(x)), and henceidn(χU) is the characteristic func-
tion of U (n).

(2): Any two equivalent characteristic functions classify
the same open set andidσ→Σ

n has finite image modulo con-
textual equivalence.

(4): idn(χU) is a rational chain with lubχU , i.e.
χU (x) = > iff idn(χU)(x) = > for somen.

Theorem 4.15. An elementb ∈ σ is finite if and only if the
set↑ b

def= {x ∈ σ | b v x} is open.

Proof. (⇒): By Proposition 3.9, for anyx ∈ σ we have
that↑x =

⋂
{U | U is open andx ∈ U}. Becauseb is fi-

nite, there isn such thatidn(b) = b. Hence ifb belongs to
an open setU then b ∈ U (n) ⊆ U by Lemma 4.14(1).
This shows that↑ b =

⋂
{U (n) | U is open andb ∈ U}.

But this is the intersection of a set of finite cardinality by
Lemma 4.14(2) and hence open by Proposition 3.6.

(⇐): If b v
⊔

n xn holds for a rational chainxn, then⊔
n xn ∈ ↑ b and hencexn ∈ ↑ b for somexn by Proposi-

tion 3.10(2), i.e.b v xn.

5

Corollary 4.16. Every open set is a union of open sets of
the form↑ b with b finite.

Proof. If x belongs to an open setU thenx ∈ ↑ b ⊆ U for
some finiteb by Corollary 4.6 and Proposition 3.10(1).

Remark 4.17. (1) Notice that the proof of Theo-
rem 4.15(⇒) is not constructive. The reason is that we
implicitly use the fact that a subset of a finite set is finite.
In general, however, it is not possible to finitely enumer-
ate the members of a subset of a finite set unless the defin-
ing property of the subset is decidable, and here it is only
semidecidable. (2) Moreover, this non-constructivity in the
theorem is unavoidable. In fact, if we had a constructive
procedure for findingχ↑ b for every finiteb, then we would
be able to semidecide contextual equivalence for finite el-
ements, becauseb = c iff χ↑ b(c) = > = χ↑ c(b). As all
elements of finitary PCF are finite, and contextual equiva-
lence is co-semidecidable for finitary PCF, this would give
a decision procedure for equivalence, contradicting [14].

We now develop an operational version of the Kleene–
Kreisel density theorem for total elements [7].

Definition 4.18. An element of ground type istotal iff it is
maximal. An elementf ∈ (σ → τ) is total iff f(x) ∈ τ is
total wheneverx ∈ σ is total. An element of type(σ × τ)
is total iff its projections intoσ andτ are total.

It is easy to see that any type has a total element. In
order to cope with the fact that the only total element ofω,
namely∞, is defined by fixed-point recursion, we need:

Lemma 4.19. If x is an element of any type defined from
total elementsy1, . . . , yn in such a way that the only oc-
currences of the fixed-point combinator inx are those of
y1, . . . , yn, if any, thenx is total.

Proof. Define a term with free variables to be total if every
instantiation of its free variables by total elements produces
a total element, and then proceed by induction on the for-
mation ofx from y1, . . . , yn.

Theorem 4.20. Every finite element is below some total el-
ement. Hence any inhabited open set has a total element.

Proof. For each typeτ and eachn ∈ N, define programs
F τ : ω → ((τ → τ) → τ) andGτ

n : (τ → τ) → τ by

F (x)(f) = if x > 0 then f(F (x− 1)(f)),
Gn(f) = fn(t) for some chosent ∈ τ total.

ThenF (∞) = fix, F (n) v Gn andGn is total.
Now, given a finite elementb of any type, choose a fresh

syntactic variablex of typeω, and define a term̃b from b by
replacing all occurrences offixτ by the termF τ (x). Then
b = (λx.b̃)(∞). Becauseb is finite, there is somen ∈ N
such that alreadyb = (λx.b̃)(n).

To conclude, construct a term̂b from b by replacing all
occurrences offixτ by Gτ

n. Thenb̂ is total by Lemma 4.19,
and(λx.b̃)(n) v b̂ and henceb v b̂ by transitivity.

We finish this section by considering a continuity princi-
ple for two special kinds of functions. For elementsx andy
of the same type, define

x =n y ⇐⇒ idn(x) = idn(y).
We refer to the function type(Nat→ Nat) as theBaire type
and denote it byBaire. (Then the set oftotal elements of
Baire is an operational manifestation of theBaire spaceof
classical topology.) The following is easily proved:

Lemma 4.21. Defineidn : Baire → Baire by idn(s) =
λi. if i < n then s(i) else ⊥. Thenidn(s) is finite and
aboveidn(s), and ifs, t ∈ Baire are total then

idn(s) v t =⇒ s =n t.

Proposition 4.22. For total f ∈ (σ → Baire) andx ∈ σ,

∀ε ∈ N ∃δ ∈ N ∀ total y ∈ σ, x =δ y ⇒ f(x) =ε f(y).

Proof. Becauseidε(f(x)) is finite and belowf(x), there
is δ such that alreadyidε(f(x)) v f(idδ(x)) by Propo-
sition 4.5. If x =δ y then f(idδ(x)) = f(idδ(y)) and
henceidε(f(x)) v f(idδ(y)) v f(y). By Lemma 4.21,
f(x) =ε f(y), as required.

Similarly, we have:

Proposition 4.23. For any totalf ∈ (σ → γ) and any total
x ∈ σ, whereγ ∈ {Nat, Bool},
∃δ ∈ N ∀ total y ∈ σ, x =δ y =⇒ f(x) = f(y).

5. Compact sets
The intuition behind the topological notion of compact-

ness is that a compact set behaves, in many important re-
spects, as if it were a set of finite cardinality — see e.g. [11].
The official topological definition, which is more obscure,
says that a subsetQ of a topological space is compact iff it
satisfies the Heine–Borel property: any collection of open
sets that coversQ has a finite subcollection that already cov-
ersQ. In order to arrive at an operational notion of compact-
ness, we reformulate this in two stages.

(1) Any collection of open sets of a topological space can
be made directed by adding the unions of finite subcollec-
tions. Hence a setQ is compact iff every directed cover ofQ
by open sets includes an open set that already coversQ.

(2) Considering the Scott topology on the lattice of open
sets of the topological space, this amounts to saying that the
collection of open setsU with Q ⊆ U is Scott open in this
lattice.

Thus, this last reformulation considers open sets of open
sets. We take this as our definition, with “Scott open” re-
placed by “open” in the sense of Definition 3.5: we say that
a collectionU of open sets of a typeσ is open if the collec-
tion {χU | U ∈ U} is open in the function type(σ → Σ).

6

Lemma 5.1. For any setQ of elements of a typeσ, the
following two conditions are equivalent:

1. The collection{U open| Q ⊆ U} is open.
2. There is(∀Q) ∈ ((σ → Σ) → Σ) such that

∀Q(p) = > ⇐⇒ p(x) = > for all x ∈ Q.

Proof. ∀Q = χU for U = {χU | Q ⊆ U}, because if
p = χU thenQ ⊆ U ⇐⇒ p(x) = > for all x ∈ Q.

Definition 5.2. We say that a setQ of elements of a typeσ
is compactif it satisfies the above equivalent conditions. In
this case, for the sake of clarity, we write “∀x ∈ Q. . . . ”
instead of “∀Q(λx. . . .)”.

Lemma 5.1(2) gives a sense in which a compact set be-
haves as a set of finite cardinality: it is possible to univer-
sally quantify over it in a mechanical fashion. Hence every
finite set is compact. Examples of infinite compact sets will
be given shortly. By Lemma 5.1(1), compact sets satisfy
the “rational Heine–Borel property”, because open sets are
rationally Scott open:

Proposition 5.3. If Q is compact andUn is a rational chain
of open sets withQ ⊆

⋃
n Un, then there isn ∈ N such that

alreadyQ ⊆ Un.

Further properties of compact sets that are familiar from
classical topology hold for our operational notion [8]:

Proposition 5.4.
1. For anyf ∈ (σ → τ) and any compact setQ in σ, the

setf(Q) = {f(x) | x ∈ Q} is compact inτ .
2. If Q is compact inσ andR is compact inτ , thenQ×R

is compact inσ × τ .
3. If Q is compact inσ andV is open inτ , then

N(Q,V) def= {f ∈ (σ → τ) | f(Q) ⊆ V }
is open in(σ → τ).

Proof. (1): ∀y ∈ f(Q).p(y) = ∀x ∈ Q.p(f(x)).
(2): ∀z ∈ Q×R.p(z) = ∀x ∈ Q.∀y ∈ R.p(x, y).
(3): χN(Q,V)(f) = ∀x ∈ Q.χV (f(x)) .

The set ofall elements of any typeσ is compact, but
for trivial reasons:p(x) = > holds for all x ∈ σ iff it
holds forx = ⊥, by monotonicity, and hence the definition
∀σ(p) = p(⊥) gives a universal quantification program.

Proposition 5.5. The total elements ofNat and Baire
don’t form compact sets.

Proof. It is easy to constructg ∈ (ω × Nat→ Σ) such that
g(x, n) = > iff x > n for all x ∈ ω andn ∈ N. If the total
elementsN of Nat did form a compact set, then we would
haveu ∈ (ω → Σ) defined byu(x) = ∀n ∈ N.g(x, n)
that would satisfyu(k) = ⊥ for all k ∈ N andu(∞) = >
and hence would violate rational continuity. ThereforeN is
not compact inNat. If the total elements ofBaire formed a

compact set, then, consideringf ∈ (Baire→ Nat) defined
by f(s) = s(0), Proposition 5.4(1) would entail thatN is
compact inNat, again producing a contradiction.

The above proof relies on a continuity principle rather
than on recursion theory. Thus, compactness ofN in Nat
fails even if the language includes an oracle for the Halt-
ing Problem. Taking Lemma 5.1(1) as the formulation of
compactness, by Theorem 4.15 and Lemma 4.14, we have:

Proposition 5.6. An open set is compact iff it has finite
characteristic. Hence every open set is a rational union of
compact open sets.

Armed with the results that we have so far, it is easy to
see that if an open set has finite characteristic then it is the
upper set of a finite set of finite elements. The simplest non-
trivial example of a compact set, which is a manifestation
of the “one-point compactification of the discrete space of
natural numbers”, is given in the following proposition.

We regard function types of the form(Nat → σ) as
sequence types and define “head”, “tail” and “cons” con-
structs for sequences as follows:

hd(s) = s(0), tl(s) = λi.s(i + 1),
n :: s = λi. if i == 0 then n else s(i− 1).

We also use familiar notations such as0n1ω as shorthands
for evident terms such asλi. if i < n then 0 else 1.

Proposition 5.7. The setN∞ of sequences of the forms
0n1ω and0ω is compact inBaire.

Proof. Define, omitting the subscriptN∞ for ∀,
∀(p) = p(if p(1ω) ∧ ∀s.p(0 :: s) then t),

wheret is some element ofN∞. More formally,∀ = fix(F)
where

F (A)(p) = p(if p(1ω) ∧A(λs.p(0 :: s)) then t).
We must show that, for any givenp, ∀(p) = > iff p(s) = >
for all s ∈ N∞.

(⇐): The hypothesis givesp(0ω) = >. By Proposi-
tion 4.5, there isn such that alreadyp(idn(0ω)) = >. But
idn(0ω)(i) = 0 if i < n and idn(0ω)(i) = ⊥ otherwise.
Using this and monotonicity, a routine proof by induction
on k shows that ifp(idk(0ω)) = > thenF k(⊥)(p) = >.
The result hence follows from the fact thatF k(⊥) v ∀.

(⇒): By rational continuity, the hypothesis implies that
Fn(⊥)(p) = > for somen. A routine, but slightly la-
borious, proof by induction onk shows that, for allq, if
F k(⊥)(q) = > thenq(s) = > for all s ∈ N∞.

In order to construct more sophisticated examples of
compact sets, we need the techniques of Section 6 be-
low. Before that, we consider someuniform-continuity
principles (cf. Propositions 4.22 and 4.23). Define
s ≡n t ⇐⇒ idn(s) = idn(t) for idn : Baire → Baire
as in Lemma 4.21.

7

Lemma 5.8. For f ∈ (σ → Baire) total andQ a compact
set of total elements ofσ,

∀ε ∈ N ∃δ ∈ N ∀x ∈ Q, f(x) ≡ε f(idδ(x)).

Proof. For any givenε ∈ N, it is easy to construct a pro-
grame ∈ (Baire× Baire→ Σ) such that

(i) if s, t ∈ Baire are total thens ≡ε t ⇒ e(s, t) = >,
(ii) for all s, t ∈ Baire, e(s, t) = > ⇒ s ≡ε t.

If we definep(x) = e(f(x), f(x)), then, by the hypothesis
and (i),∀Q(p) = >. By Proposition 4.5,∀Q(idδ(p)) = >
for someδ ∈ N, and, by Proposition 4.10,idδ(p)(x) =
p(idδ(x)). It follows thate(f(idδ(x)), f(idδ(x))) = > for
all x ∈ Q. By monotonicity,e(f(x), f(idδ(x))) = >, and,
by (ii), f(x) ≡ε f(idδ(x)), as required.

Theorem 5.9. For f ∈ (σ → Baire) total andQ a com-
pact set of total elements ofσ,

∀ε ∈ N ∃δ ∈ N ∀x, y ∈ Q, x =δ y ⇒ f(x) =ε f(y).

Proof. Givenε ∈ N, first constructδ ∈ N as in Lemma 5.8.
Forx, y ∈ Q, if x =δ y thenidε(f(x)) = idε(f(idδ(x))) =
idε(f(idδ(y))) v f(y). By Lemma 4.21,f(x) =ε f(y), as
required.

Similarly, we have:

Proposition 5.10. For γ ∈ {Nat, Bool}, f ∈ (σ → γ)
total andQ a compact set of total elements ofσ,

1. ∃δ ∈ N ∀x ∈ Q, f(x) = f(idδ(x)),
2. ∃δ ∈ N ∀x, y ∈ Q, x =δ y =⇒ f(x) = f(y).

The following is used in Section 7 below:

Definition 5.11. Forf andQ as in Proposition 5.10, we re-
fer to the leastδ ∈ N such that (1) (respectively (2)) holds as
the big (respectivelysmall) modulus of uniform continuity
of f atQ.

6. A data language
In an operational setting, one usually adopts the same

language to construct programs of a type and to express data
of the same type. But consider programs that can accept ex-
ternally produced streams as inputs. Because such streams
are not necessarily definable in the language, it makes sense
to consider program equivalence defined by quantification
over more liberal “data contexts” and ask whether the same
notion of program equivalence is obtained.

Definition 6.1. Let P be the programming language intro-
duced in Section 2, perhaps extended with parallel features,
but not with oracles, and letD beP extended with oracles.
We think ofD as adata languagefor the programming lan-
guageP. The idea is that the closed terms ofP arepro-
gramsand those ofD are (higher-type)data. Accordingly,
in this context, the notationx ∈ σ means thatx is a closed
term of typeσ in the data language. Of course, this includes
the possibility thatx is a program.

The following is folklore and goes back to Milner [16]:

Theorem 6.2. For terms inP, equivalence with respect to
groundP-contexts and equivalence with respect to ground
D-contexts coincide.

Proof. For any oracleΩ, idn(Ω) is extensionally equivalent
to some program, for both notions of equivalence. Hence
for any elementx of any type,idn(x) is equivalent to some
program. To conclude, apply Proposition 4.4.

On the other hand, the notion of totality changes:

Theorem 6.3. There are programs that are total with re-
spect toP but not with respect toD.

This kind of phenomenon is again folklore. There are
programs of type e.g.Cantor → Bool, whereCantor

def=
(Nat → Bool), that, when seen from the point of view of
the data language, map programmable total elements to to-
tal elements, but diverge at some non-programmable total
inputs. The construction uses Kleene trees [5], and can be
found in [8, Chapter 3.11]. This is analogous to the fact
that totality with respect toP also disagrees with totality
with respect to denotational models. A proof for the Scott
model can be found in [22]. For the intriguing relationship
between totality in the Scott model with sequential compu-
tation, see [17].

7. Sample applications

We use the data languageD to formulate specifications
of programs in the programming languageP. As in Sec-
tion 6, the notationx ∈ σ means thatx is a closed term of
type σ in D. This is compatible with the notation of Sec-
tions 3–5 by takingD as the underlying language for them.
Again maintaining compatibility, we take the notions of to-
tality, open set and compact set with respect toD. To indi-
cate that openness or compactness of a set is witnessed by
a program rather than just an element of the data language,
we sayprogrammablyopen or compact.

As for the Baire type, we think of the elements of the
Cantor type as sequences, and, following topological tradi-
tion, in this context we identify the booleanstrue andfalse
with the numbers0 and1 (it doesn’t matter in which order).
The following is our main tool in this section:

Theorem 7.1. The total elements of the Cantor type form a
programmably compact set.

Proof. This is proved and discussed in detail in [8, Chap-
ter 3.11], and hence we only provide the construction of the
universal quantification program, with one minor improve-
ment. We recursively define∀ : (Cantor→ Σ) → Σ by

∀(p) = p(0 :: if ∀s.p(0 :: s) ∧ ∀s.p(1 :: s) then t),

8

where t is some programmable total element ofCantor.
The correctness proof for this program is similar to that
of Proposition 5.7, but involves an invocation of König’s
Lemma.

Remark 7.2. If the data language is taken to beP itself,
Theorem 7.1 fails for the same reason that leads to The-
orem 6.3 [8, Chapter 3.11]. Of course, the above pro-
gram∀ : (Cantor → Σ) → Σ can still be written down.
But it no longer satisfies the required specification given in
Lemma 5.1(2). In summary, it is easier to universally quan-
tify over all total elements of the Cantor type than just over
theprogrammableones, to the extent that the former can be
achieved by a program but the latter cannot.

Interestingly, the programmability conclusion of Theo-
rem 7.1 is not invoked for the purposes of this section, be-
cause we only apply compactness to get uniform continuity.

The following theorem is due to Berger [6], with
domain-theoretic denotational specification and proof. As
discussed in the introduction, the purpose of this section is
to illustrate that such specifications and proofs can be di-
rectly understood in our operational setting, and, moreover,
apply tosequentialprogramming languages.

Theorem 7.3. There is a total program
ε : (Cantor→ Bool) → Cantor

s.t. for any totalp ∈ (Cantor→ Bool), if p(s) = true for
some totals ∈ Cantor, thenε(p) is such ans.

Proof. Define
ε(p) = if p(0 :: ε(λs.p(0 :: s))) then 0 :: ε(λs.p(0 :: s))

else 1 :: ε(λs.p(1 :: s)).
The required property is established by induction on the
big modulus of uniform continuity of a total elementp ∈
(Cantor→ Bool) at the set of total elements, using the fact
that if p has modulusδ+1 thenλs.p(0 :: s) andλs.p(1 :: s)
have modulusδ, and that whenp has modulus zero,p(⊥) is
total and hencep is constant.

This gives rise to universal quantification for boolean-
valued rather than Sierpinski-valued predicates:

Corollary 7.4. There is a total program
∀ : (Cantor→ Bool) → Bool

such that for every totalp ∈ (Cantor→ Bool),
∀(p) = true⇔ p(s) = true for all total s ∈ Cantor.

Proof. First define∃ : (Cantor → Bool) → Bool by
∃(p) = p(ε(p)) and then define∀(p) = ¬∃s.¬p(s).

Corollary 7.5. The function type(Cantor→ Nat) has de-
cidable equality for total elements.

Proof. Define a program
(==): (Cantor→ Nat)× (Cantor→ Nat) → Bool

by (f == g) = ∀ totals ∈ Cantor.f(s) == g(s).

Simpson [24] applied Corollary 7.4 to develop surprising
sequential programs for computing integration and supre-
mum functionals([0, 1] → R) → R, with real numbers
represented as infinite sequences of digits. The theory de-
veloped here copes with that, again allowing a direct opera-
tional translation of the original denotational development.
For lack of space to introduce the necessary background on
real number-computation, we illustrate the main idea by re-
formulating the development of the supremum functional,
with the closed unit interval and the real line replaced by
the Cantor and Baire types, and with the natural order of
the reals replaced by the lexicographic order on sequences.

The lexicographic orderon the total elements of the
Baire type is defined bys ≤ t iff whenevers 6= t, there
is n ∈ N with s(n) < t(n) ands(i) = t(i) for all i < n.

Lemma 7.6. There is a total program
max: Baire× Baire→ Baire

such that
1. max(s, t) is the maximum ofs and t in the lexico-

graphic order for all totals, t ∈ Baire, and
2. (s, t) =ε (s′, t′) ⇒ max(s, t) =ε max(s′, t′) for all

s, t, s′, t′ ∈ Baire (total or not) and allε ∈ N.

Proof. Define
max(s, t) = if hd(s) == hd(t)

then hd(s) :: max(tl(s), tl(t))
else if hd(s) > hd(t) then s else t.

The easy details of the correctness proof are omitted.

Theorem 7.7. There is a total program
sup: (Cantor→ Baire) → Baire

such that for every totalf ∈ (Cantor→ Baire),
sup(f) = sup{f(s) | s ∈ Cantor is total},

where the supremum is taken in the lexicographic order.

Proof. Let t ∈ Cantor be a programmable total element
and define

sup(f) = let h = hd(f(t)) in
if ∀ totals ∈ Cantor.hd(f(s)) == h

then h :: sup(λs. tl(f(s)))
else max(sup(λs.f(0 :: s)), sup(λs.f(1 :: s))),

where “let x = . . . inM ” stands for “(λx.M)(. . .)”.
One shows by induction onn ∈ N that, for every total

f ∈ (Cantor→ Baire),
sup(f) =n sup{f(s) | s ∈ Cantor is total}.

The base case is trivial. For the induction step, one proceeds
by a further induction on the small modulus of uniform con-
tinuity of hd ◦f : Cantor → Nat at the total elements of
Cantor, crucially appealing to the non-expansiveness con-
dition given by Lemma 7.6(2). One uses the facts that
if hd ◦f has modulusδ + 1 then hd ◦λs.f(0 :: s) and
hd ◦λs.f(1 :: s) have modulusδ, and that ifhd ◦f has mod-
ulus0 thenhd(f(s)) = hd(f(t)) for all totals andt.

9

Theorems 7.3 and 7.7 rely on the compactness of the to-
tal elements of the Cantor type. Arguments similar to that
of Proposition 5.5 show that these two theorems fail if the
Cantor type is replaced by the Baire space.

8. Open problems and further developments

The Tychonoff theorem in classical topology states that
a product of arbitrarily many compact spaces is compact. A
proof that this holds in a computational setting for count-
ably many compact spaces is developed in [8, Chapter 13].
Moreover, the given implementation is sequential. How-
ever, the proposed proof is for the specification of the pro-
gram interpreted in the Scott model. At the time of writing,
we are not able to apply our techniques to derive a correct-
ness proof of the program for an interpretation of the speci-
fication in the sequential data language considered here.

Our use of sequence types(Nat → σ) can be easily re-
placed by lazy lists by applying the bisimulation techniques
of [9] to prove the correctness of evident programs that im-
plement the SFP property for lazy lists. There is no dif-
ficulty in developing the results of this paper in a call-by-
value setting, and we believe we can also handle recursive
types. But computational features such as state and control,
and non-determinism and probability seem to pose genuine
challenges.

In the presence of probability or of abstract data types for
real numbers, types won’t be algebraic in general and hence
a binary notion of finiteness, analogous to the way-below
relation in classical domain theory, needs to be developed.

The avoidance of syntactic manipulations suggests that
the theory worked out in this paper could be developed in
a general axiomatic framework rather than just term mod-
els. In particular, this would make our results available to
models that are not constructed from domain-theoretic or
topological data, e.g. games models.

Acknowledgements.The impossibility of a construc-
tive proof of Theorem 4.15 (Remark 4.17(2)) was found
together with Vincent Danos during a visit to our institu-
tion. We also benefited from valuable feedback by Achim
Jung, Paul B. Levy, Andy Pitts, Uday Reddy, Alex Simp-
son, Thomas Streicher and Steve Vickers.

References

[1] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for
PCF. Inform. and Comput., 163(2):409–470, 2000.

[2] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum, editors,Handbook of Logic in Com-
puter Science, volume 3 ofOxford science publications, pages 1–
168. Clarendon Press, 1994.

[3] R.M. Amadio and P.-L. Curien.Domains and Lambda-Calculi. CUP,
1998.

[4] S. Awodey, L. Birkedal, and D.S. Scott. Local realizability toposes
and a modal logic for computability.Math. Structures Comput. Sci.,
12(3):319–334, 2002.

[5] M.J. Beeson.Foundations of Constructive Mathematics. Springer,
1985.

[6] U. Berger. Totale Objekte und Mengen in der Bereichstheorie. PhD
thesis, Mathematisches Institut der Universität München, 1990.

[7] U. Berger. Computability and totality in domains.Math. Structures
Comput. Sci., 12(3):281–294, 2002.

[8] M.H. Escard́o. Synthetic topology of data types and classical spaces.
Electron. Notes Theor. Comput. Sci., 87:21–156, 2004.

[9] A.D. Gordon. Bisimilarity as a theory of functional programming.
Theoret. Comput. Sci., 228(1-2):5–47, 1999.

[10] C.A. Gunter.Semantics of Programming Languages—Structures and
Techniques. The MIT Press, 1992.

[11] E. Hewitt. The r̂ole of compactness in analysis.Amer. Math. Monthly,
67:499–516, 1960.

[12] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II
and III. Inform. and Comput., 163(2):285–408, 2000.

[13] A. Jung. Talk at the Workshop on Full abstraction of PCF and related
Languages, BRICS institute, Aarhus, 1995.

[14] R. Loader. Finitary PCF is not decidable.Theoret. Comput. Sci.,
266(1-2):341–364, 2001.

[15] I.A. Mason, S.F. Smith, and C.L. Talcott. From operational semantics
to domain theory.Inform. and Comput., 128(1):26–47, 1996.

[16] R. Milner. Fully abstract models of typedλ-calculi. Theoret. Com-
put. Sci., 4(1):1–22, 1977.

[17] D. Normann. Computability over the partial continuous functionals.
J. Symbolic Logic, 65(3):1133–1142, 2000.

[18] A.M. Pitts. A note on logical relations between semantics and syn-
tax. Logic Journal of the Interest Group in Pure and Applied Logics,
5(4):589–601, July 1997.

[19] A.M. Pitts. Operationally-based theories of program equivalence. In
Semantics and logics of computation (Cambridge, 1995), volume 14
of Publ. Newton Inst., pages 241–298. CUP, 1997.

[20] A.M. Pitts. Operational semantics and program equivalence. In
G. Barthe, P. Dybjer, and J. Saraiva, editors,Applied Semantics, Ad-
vanced Lectures, volume 2395 ofLec. Not. Comput. Sci., Tutorial,
pages 378–412. Springer, 2002.

[21] G.D. Plotkin. LCF considered as a programming language.Theoret.
Comput. Sci., 5(1):223–255, 1977.

[22] G.D. Plotkin. Full abstraction, totality and PCF.Math. Structures
Comput. Sci., 9(1):1–20, 1999.

[23] D.S. Scott. A type-theoretical alternative to CUCH, ISWIM and
OWHY. Theoret. Comput. Sci., 121:411–440, 1993. Reprint of a
1969 manuscript.

[24] A. Simpson. Lazy functional algorithms for exact real functionals.
Lec. Not. Comput. Sci., 1450:323–342, 1998.

[25] M.B. Smyth. Power domains and predicate transformers: a topolog-
ical view. volume 154 ofLec. Not. Comput. Sci., pages 662–675,
1983.

[26] M.B. Smyth. Topology. In S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, editors,Handbook of Logic in Computer Science, vol-
ume 1 ofOxford science publications, pages 641–761. Clarendon
Press, 1992.

[27] K. Weihrauch.Computable analysis. Springer, 2000.

10

