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Abstract Regarding topology, we define open sets of elements

A number of authors have exported domain-theoretic Via programs with values on a “Sierpinski” type, and
techniques from denotational semantics to the operational C0mMpact sets of elements via Sierpinski-valued universal-
study of contextual equivalence and preorder. We further quantification programs. Then (1) the open sets of any type
develop this, and, moreover, we additionally expogo- are closed_under the formation of f|n|Fe intersections and
logical techniques. In particular, we work with an opera- 'ational unions, (2) open sets are “rationally Scott open”,
tional notion of compact set and show that total programs (3) compact sets satisfy the “rational Heine—Borel prop-
with values on certain types are uniformly continuous on €rty”, (4) total programs with values on certain types are
compact sets of total elements. We apply this and other conuniformly continuous on compact sets of total elements.
clusions to prove the correctness of non-trivial programs  In order to be able to formulate certain specifications of
that manipulate infinite data. What is interesting is that the higher-type programs without invoking a denotational se-
development applies equentiaprogramming languages.  mantics, we work with a “data language” for our program-

ming language, which consists of the latter extended with
1. Introduction first-order “oracles”. The idea is to have a more power-
ful environment in order to get stronger program specifi-
cations. We observe that program equivalence defined by
ground data contexts coincides with program equivalence
defined by ground program contexts, but the notion of total-
ity changes. (It is worth mentioning that the resulting data
language for PCF defines precisely the elements of games
models [1, 12], with the programming language capturing
the effective parts of the models; similarly, the resulting data
language for PCF extended with parallel-or and Plotkin’s
existential quantifier defines precisely the elements of the
Scott model, again with the programming language captur-
ing the effective part [21, 8].)

Domain theory and topology in programming language
semantics have been applied to manufacture and stedy
notationalmodels, e.g. the Scott model of PCF [23]. As is
well known, for a sequential language like this, the match of
the model with the operational semantics is imprecise: com-
putational adequacy holds but full abstraction fails [21].

The main achievement of the present work is a recon-
ciliation of a good deal of domain theory and topology
with sequential computation. This is accomplished by side-
stepping denotational semantics and reformulating domain-
theoretic and topological notions directly in terms of pro-
gramming concepts, interpreted in an operational way. . o

Regarding domain theory, we replace directed sets by Wg illustrate the scope and flexibility of the theory by
rational chains, which we observe to be equivalent to pro- @PPlying our conclusions to prove the correctness of non-
grams defined on a “vertical natural numbers” type. Many trivial programs that manipulate |nf|n|te_ data._ We take one
of the classical definitions and theorems go through with Such example from [24]. In order to avoid having exact real-
this modification. In particular, (1) rational chains have NUMber computation as a prerequisite, as in that reference,
suprema in the contextual order, (2) programs of functional We consider modified versions of the program and its spec-
type preserve suprema of rational chains, (3) every e|ememflcat|_on that re_t_am_thelr essentla_l aspects. We show that
(closed term) of any type is the supremum of a rational the given spemﬂcaﬂpn and proof_ln the Sgott model can be
chain of finite elements, (4) two programs of functional directly understood in our operational setting.
type are contextually equivalent iff they produce a contex-  Although our development is operational, we never in-
tually equivalent result for every finite input. Moreover, we voke evaluation mechanisms directly. We instead rely
have an SFP-style characterization of finiteness using ratio-on known extensionality, monotonicity, and rational-chain
nal chains of deflations, a Kleene-Kreisel density theorem principles for contextual equivalence and order. Moreover,
for total elements, and a number of continuity principles with the exception of the proof of the density theorem, we
based on finite elements. don't perform syntactic manipulations with terms.



Related work. The idea that order-theoretic techniques (i) If M | N +1andN || VthenM —1 | V.
from domain theory can be directly understood in terms (iii) If M |} M’ +1thenM >0 T.
of operational semantics goes back to Mason, Smith, Tal-  For any types, we definel, = fixxz.z, wherefix de-
cot [15] and Sands (see Pitts [19] for references). Already notes the fixed-point recursion construct. In what follows,
in [15], one can find, in addition to rational-chain princi- if f: ¢ — o is a closed term, we shall writéx f as an
ples, two equivalent formulations of an operational notion abbreviation foffix x. f(z).

of finiteness. One is analogous to our Definition 4.1 butuses  oracles.We also consider the extension of the program-
directed sets of closed terms rather than rational chains, a”filning language with the following term-formation rule:

the other is analogous to our Theorem 4.8. In addition to (4) If Q: N — N s any function, computable or not, and
redeveloping their formulations in terms of rational chains, N': Nat is a term, the2N : Nat is a term.
here we add a topological characterization (Theorem 4.15).1an the operational semantics is extended by the rule:

The idea that topological techniques can be directly un- (v) If N I} nandQ(n) = m thenQN 1} m.
derstood in terms of operational semantics, and, moreover,ya think of O as an external input aoracle, and of the
are applicable to sequential languages, is due to E&¢afd
In particular, we have taken our operational notion of com-
pactness and some material about it from that reference
The main novelty here is a uniform-continuity principle,
which plays a crucial role in the sample applications given
in Section 7. This is inspired by unpublished work by An-
drej Bauer and Escabdon synthetic analysis in (sheaf and
realizability) toposes.

The idea of invoking a data language to formulate
higher-type program specifications in a sequential opera-
tional setting is already developed in [8] and is related to
relative realizability [4] and TTE [27].

equationf2(n) = m as a query with question and an-
swerm. Of course, the extension of the language with ora-
cles is no longer @rogramming languageé/e shall regard

it as adata languageén Section 6.

Underlying language for Sections 3—-5We take it to
be either (1) the programming language introduced above,
(2) its extension with oracles, (3) its extension with parallel
features, such as parallel-or and Plotkin’s existential quan-
tifier, or else (4) its extension with both oracles and paral-
lel features. The conclusions of those sections hold for the
four possibilities, at no additional cost. To emphasize that
a closed term doesn’t include oracles, we refer to it as a
program

Notation for contextual equivalence and (pre)order.

The programming language We work with a simply- we erteM = N andM C N to denote (ground) con-
typed \-calculus with function and finite-product types, textual equivalence and order of terms of the same type.
fixed-point recursion, and base typest for natural num- Elements of a typeBy anelemenbf a type we mean a
bers andBool for booleans. We regard this as a program- closed term of that type. We adopt usual set-theoretic nota-
ming language under the call-by-name evaluation strat-tion for the elements of a type in the sense just defined. For
egy. In summary, we work with PCF extended with finite- €xample, we writec € o andf € (¢ — 7) to mean that:
product types (see e.g. one of the references [10, 19]). OthefS an element of type and f is an element of type — 7.

2. Preliminaries

possibilities are briefly discussed in Section 8. The elements of. The elementd. andT of X are con-
For clarity of exposition, we also include Sierpinski textually inequivalent and any element¥fs equivalent to
base typeX and avertical-natural-numbersase typeo, one of them. We think oE as a type of results of observa-

although such types can be easily encoded in other existingions or semidecisions, witli as “observable true” and
types if one so desires (e.g. via retractions). We have theas “unobservable false”.

following term-formation rules for them: The elements ofo. We denote byoo the element
1) T: Xisaterm. fixxz.x + 1 of @, and, by an abuse of notation, farec N
(2) If M: ¥ andN: o are terms therfif M then N): o we write n to denote the elementicc” (L) of @, where
is a term. succ(z) = x + 1. The elementd,1,2,...,n,...,00 of @
(3) If M:wisatermtherM +1): @, (M —1): &, and are all contextually inequivalent, and any elementoois
(M > 0): X are terms. contextually equivalent to one of them. Notice that the

The only value (or canonical form) of typeis T, and the ~ equivalence§ —1 =0, (z+1)- 1=, (0> 0) = L and

values of typew are the terms of the formi/ + 1. The (x+1>0) =T hold forz € @. In particularoo — 1 = oo

role of zero is played by divergent computations, and a termand(co > 0) = T.

(M > 0) can be thought of as a convergence test. The big-  Extensionality and monotonicity. Contextual equiva-

step operational semantics for these constructs is given bylence is a congruence: ff= g andz = y thenf(z) = g(y)

the following evaluation rules: forany f,g € (c — 7)andz,y € o. Moreover, applica-
@) If My TandN | Vthen(if M then N) | V. tion is extensional:f = g if f(z) = g(x) forall z € o.



Regarding the contextual order, we have that application isProposition 3.3. If f € (¢ — 7) andz,, is a rational chain

monotone: Iff C g andx C y then f(z) C g(y) for in o, then
any f,g € (0 — 7)andxz,y € o. Moreover, it is order- 1. f(z,) is arational chain inr, and
extensional:f C g if f(z) C g(x) for all x € 0. Stan- 2. flU,, zn) =1, flzn).

dard congruence, extensionality and monotonicity princi-
ples also hold for product types. Additionally,, is the
least element of.

Proof. By Lemma 3.2, there i$ € (W — o) such that

x, = l(n). Then the definitior’(y) = f(I(y)) and the

: i same lemma show th#{z,,) is a rational chain. By two ap-
Rational chains. For anyg € (T-*f T) ar_1d any  plications of Lemma 3.1 (| |, z,,) = f(I(00)) = I'(c0) =

h € (r — o), the sequencé(g™(Ll)) is increasing and Ll U'(n) =L f(in) =] ’f(m ).

hash(fix g) as a least upper bound in the contextual order: —" " A

h(fixg) = L], h(g"(L)). g:;zllgrz/ 3.4. For any rational chainf,, in (¢ — 7) and
A sequencer,, of elements of a type is called arational 1. f, (x)' is a rational chain inr, and
chainif there existg € (r — 7) andh € (7 — o) with 2. (U, fa)(@) =L, falz)

zn, = h(g"(L1)). .
Proofs. The facts stated in this section are all well Proof. Apply the proposition toF” € ((c — 7) — 7) de-

known. The extensionality, monotonicity and rational-chain fined by '(f) = f(x). .
principles follow directly from Milner's construction [16].  Definition 3.5. We say that a sét of elements of a type
Even though full abstraction of the Scott model fails for s openif there isyy; € (¢ — %) such that for alk: € o,
sequential languages, proofs exploiting computational ad- xo(z)=T < zel.

equacy are possible [13] (see [18]). Proofs using game sedf such an elemenf exists then it is unique up to con-
mantics can be found in [1, 12], and operational proofs cantextual equivalence, and we refer to it as taracteristic

be found in [19, 20] (where an earlier operational proof of functionof U.

the rational-chains principle is attributed to Sands). For a . i
call-by-value untyped language, an operational proof of the VW& Say that a sequence of open setg iis a rational
rational-chains principle was previously developed in [15]. chain if the corresponding sequence of characteristic func-

Regarding the above description of the elements of the!ions is rational in the function typer — ). The fol-
vertical-natural-numbers type, a denotational proof using 'OWing says that the open sets of any type form a “rational

adequacy is easy, and operational proofs are obtained apt®P0l09y”

plying [9] or [19]. Proposition 3.6. For any type, the open sets are closed un-
der the formation of finite intersections and rational unions.

3. Rational chains and open sets Proof. Finite intersectionsxn¢(z) = T andxuynv(z) =

xu(x) A xv(z), wherep A ¢ = if p then q.

I__emma 3:1. The sequence, 1,2,...,n,... inwis ara- Rational unionsBecausé/ C V' iff yu C xv, we have

tional chain with least upper bounsb, and thatif | € (@ — (0 — ¥)) andli(n) is the characteristic
I(o0) = L, {(n) for everyl € (w — o). function of U, thenl(oo) = |, xv, = Xy, v.- O

Proof. n = succ” (L) andoo = fix succ. O However, unless the language has parallel features, the

N . . . . open sets don't form topologies in the usual sense:
Moreover, this is the “generic rational chain” with P holog

“generic luboo” in the following sense: Proposition 3.7. The following are equivalent.
1. For every type, the open sets are closed under the for-

Lemma 3.2. A sequence;,, € o is a rational chain if and mation of finite unions.

only if there exist$ € (w — o) such that for alln € N, 2. Thereis(V) € (£ x ¥ — %) such that
x, = l(n), and hence such that| x,, = I(c0). pVg=T < p=Torg=T.
Proof. (=): Giveng € (r — 7) andh € (1t — o) with Proof. (1): xye(z) = L andxpuy (¢) = xv (@) Vxv ().
zn = h(g"(L)), recursively define W: U =A@ [p=TrandV ={(p,q) [ ¢ =T}
F(y) =ify > 0 then g(f(y — 1)). are open in the typ& x 3 because they have the first and
Thenf(n) = ¢"(_L) and hence we can take= % o f. second projections as their characterlstlp functions. Hence
(«<): Takeh = L andg(y) = y + 1. 0 the setU U V' is also open, and so thereygy such that

xvuv(p,q) = Tiff (p.q) € UUViff (p,q) € U or
Elements of functional type are “rationally continuous” (p,q) € V iff p = T orq = T. Therefore(V) = xuuv
in the following sense: gives the desired conclusion. O



Moreover, even if parallel features are included, closure Proof. (=): If b = ||, z,, thenb C || z, and hence
under arbitrary unions fails in general (but see [8, Chap- b C «x,, for somen. But, by definition of upper bound, we
ter 4]). The following easy observation says that elementsalso have) J z,,. Henceb = z,,, as required.

of functional type are continuous in the topological sense: («<): By Theorem 4.2, there is a rational chaip of
- finite elements witlb = | |, x,,. By the hypothesis) = z,,
Proposition 3.8. Forany f € (¢ — 7) and any open subset  for somen, which shows that is finite. O

Vofr,thesetf =3 (V) = {x € o | f(x) € V}isopenino.
) o ) The following provides a proof method for contextual
Proof. If xy € (r — X) is the characteristic function of equivalence based on finite elements:
the setl thenxy o f € (0 — ¥)isthatof f~1(V). O
Proposition 4.4. f = g holds in(c — 1) iff f(b) = g(b)
The following says that the contextual order is the “spe- for every finiteb € o.

cialization order” of the topology: ) ) o
Proof. (=): Contextual equivalence is an applicative con-

Proposition 3.9. For =,y € o, the relationz C y holds iff gruence. (<): By extensionality it suffices to show that
x € U impliesy € U for every open subsét of 0. f(z) = g(x) foranyz € 0. By Theorem 4.2, there is a ra-
tional chainb,, of finite elements withe = | |, b,. Hence,
Proof. Ground contexts of typ& suffice to test the oper- by two applications of rational continuity and one of the
ational preorder — see e.g. [19, Remark 2.10]. Because hypothesisf(z) = fl, 0n) =L, f(bn) =L, g(bn) =
andy are closed terms, applicative contexts, i.e. character—g(un b,) = g(z), as required. |
istic functions of open sets, suffice.
Of course, the above holds with contextual equivalence
Open sets are “rationally Scott open”: replaced by contextual order. Another consequence of The-
orem 4.2 is a third continuity principle:
Proposition 3.10. For any open sel in a typeo,
1. ifz € U andz C y theny € U, and Proposition 4.5. Forany f € (o — 1), anyz € ¢ and any
2. if 2, is a rational chain with |z, € U, then there is ~ finitec C f(x), there is afinite) C z with ¢ C f(b).

n € N such that already:, € U. Proof. By Theorem 4.2y is the lub of a rational chaih,

Proof. By monotonicity and rational continuit . O of finite elements. By rational continuity, £ | |,, f(bn).
y y y ol By finiteness of;, there isn with ¢ C f(b,,). " O
4. Finite elements Corollary 4.6. If U is open and: € U, then there is a finite

. . b C z such that alread .
We develop a number of equivalent formulations ofano- = — s eady € U

tion of finiteness. Corollary 4.3 says that an elemierg Proof. The hypothesis giveS T yy(z), and so there is

finite iff any attempt to build as the lub of a rational chain  some finiteh = = with T C v (b) becauseT is finite. To
already has as a building block. The official definitionisa  ¢onclude, use maximality of . O

bit subtler:

In order to prove Theorem 4.2, we invoke the following

Definition 4.1. An elementb is called (rationally)inite if concepts (see e.g. [2]):

for every rational chaim,, with b C | |, «,,, there isn such

that already C z,,. Definition 4.7.
o L 1. Adeflationon a types is an element of typéo — o)
The types of our language are “rationally algebraic” in that () is below the identity ofr, and {i) has finite

the following sense: image modulo contextual equivalence.

2. A (rational) SFP structureon a typeos is a rational
chainid,, of idempotent deflations with|, id,, = id,
the identity ofo.

A proof of this will be given later in this section. Forthe 3. Atype is (rationally)SFPif it has an SFP structure.
moment, we develop some consequences.

Theorem 4.2. Every element of any type is the least upper
bound of a rational chain of finite elements.

Theorem 4.8.
Corollary 4.3. An element is finite if and only if for every 1. Each type of the language is SFP.
rational chainz,, with b = | | z,, there isn such that 2. For any SFP structuréd,, on a typeo, an element
alreadyb = x,,. b € oisfinite if and only ifb = id,,(b) for somen € N.



In particular, becaustl,, is idempotentid,, (z) is finite
and hence any € o is the lub of the rational chaifdl,, ()
and therefore Theorem 4.2 follows.

Proof. (1): Lemma 4.13 below.

(2)(=): The inequalityb J id, (b) holds becausél,,
is a deflation. For the other inequality, we first calculate
b = (U, idn)(b) = |,, idn(b) using Corollary 3.4. Then
by finiteness ob, there isn with b C id,, (b).

(2)(«<): To show thatb is finite, letz; be a rational
chain withd T | |, z;. Thenb = id,(b) C id, (||, z:) =
LJ;idn(z;) by rational continuity ofid,,. Becaused,, has
finite image, the sefid, (z;) | ¢ € N} is finite and hence
has a maximal element, which is its lub. That is, there is
i € Nwith b C id,(x;). Butid,(z;) = x; and hence
b C x;, as required. O

We additionally have the following proposition.

Definition 4.9. By a finitary typewe mean a type that is
obtained from> andBool by finitely many applications of
the product- and function-type constructions.

Proposition 4.10. SFP structuresd; € (o — o) can be
chosen for each type in such a way that

1. id? is the identity for every finitary type,

2.1d; " () (2) = id,, (f (id7, (2))),

3. id77 7 (@, y) = (id7 (2),id}, (y))-

Iltem 1 gives:
Corollary 4.11. Every element of any finitary type is finite.

The other two give the following consequence, whose
proof uses the fact that for any SFP structide on a
typeo, if id,,(z) = = thenidy (z) = = for anyk > n.

Corollary 4.12. 1. If f € (o — 7) andz € o are finite
then soisf(z) € .

2. Ifx € o andy € T arefinite then soi$x, y) € (o x7).

Proof. (1): If f andz are finite, then there arer andn
with f = id,,(f) andz = id,,(z). Letk = max(m,n).
By Proposition 4.10f (z) = idk(f)(idk(x)) = idk(f(2)),
which shows thaf (z) is finite. (2): Similar. O

To prove Theorem 4.8(1) and Proposition 4.10, we con-
struct, by induction o, programs
d7:w— (6 — o).
For the base case, we define

& @) (p) =p,  d%(x)(p) =p
d™*(z)(k) = ifz > 0 then

if k ==0then 0

else 1 +d"™(z — 1)(k — 1),
d“(z)(y) = ifz > 0Ay > 0 then 1+d¥(z—1)(y—1).

Notice that %z > 0" and “x > 0 Ay > 0” are terms of Sier-
pinski type and hence thef” symbols that precede them

don't have corresponding:lse” clauses. For the induction
step, we define

4”7 (@) (F)(y) dT(x)(f(d”( )()),
A7 (z)(y, 2) (A7 (2)(y), d" () (2))-

Lemma 4.13. The rational chainid? = d°(n) is an SFP
structure o for every types.

Proof. By induction onc. For the base case, only= w
is non-trivial. First show by induction on that, for every
n € N, d”(n)(y) = min(n,y). Henced®(n) is idempo-
tent and below the identity, and has image 1,...,n}
Now calculate, fork € N, d“(co)(k) = ||, d”(n)(k) =
L], min(n, k) = k. Henced” (cc)(o0) = | ], d“(c0) (k) =
L, k = co. By extensionalityd”(co) is the identity. The
induction step is straightforward. O

This proves Theorem 4.8(1). Proposition 4.10(1) is eas-
ily established by induction on finitary types, and conditions
(2) and (3) are immediate.

We now develop a topological characterization of the no-
tion of finiteness. We say that an open setimasfinite
characteristidf its characteristic function is a finite element
of the function typdo — X).

Lemma 4.14. For any open seV/ in o and anyn € N, let

U™ =id YU) = {z € o | id,(z) € U}.

1. The open sdf (") C U has finite characteristic.

2. The se{U™ | U is open inc} has finite cardinality.
3. U has finite characteristic if/ = U for somen.
4. The chair/(™ is rational andU = |J,, U™.

Proof. (1) and (3): idn(xv)(z) = idn(xv(idn(x))) =
xv (id,,(z)), and henced,,(xv) is the characteristic func-
tion of U (™)

(2): Any two equivalent characteristic functions classify
the same open set al'mtf,’fE has finite image modulo con-
textual equivalence.

(4): id,(xv) is a rational chain with lubxy, i.e.
xu(x) = Tiff id,(xv)(x) = T for somen. O

Theorem 4.15. An elemenb € o is finite if and only if the

set!b = {z € o |bLC x}is open.
Proof. (=): By Proposition 3.9, for any € o we have
thattz = N{U | Uisopenand: € U}. Becausé is fi-
nite, there is» such thatd,, (b) = b. Hence ifb belongs to
an open selU thenb € U™ C U by Lemma 4.14(1).
This shows thattb = {U™ | Uisopenand c U}.
But this is the intersection of a set of finite cardinality by
Lemma 4.14(2) and hence open by Proposition 3.6.
(<): It b C |,z holds for a rational chaim,,, then
Ll,, z» € 1band hencex,, € 7b for somez,, by Proposi-
tion 3.10(2), i.eb C x,. O



Corollary 4.16. Every open set is a union of open sets of  To conclude, construct a terfnfrom b by replacing all
the form?7 b with b finite. occurrences ofix” by G7. Thenb is total by Lemma 4.19,

and(\z.b)(n) C b and hencé C b by transitivity. O
Proof. If 2 belongs to an open sétthenxz € 1b C U for (Azb)(n) £ =2 4

some finiteb by Corollary 4.6 and Proposition 3.10(1) We finish this section by considering a continuity princi-

. ple for two special kinds of functions. For elementandy
Remark 4.17. (1) Notice that the proof of Theo- ,fihe same type, define

rem 4.1%=-) is not constructive. The reason is that we T =ny = idn(z) =id,(y).

implicitly use the fact that a subset of a finite set is finite. We refer to the function typ@iat — Nat) as theBaire type
In general, however, it is not possible to finitely enumer- and denote it baire. (Then the set ofotal elements of
ate the members of a subset of a finite set unless the defingaire is an operational manifestation of tBaire spaceof
ing property of the subset is decidable, and here it is only classical topology.) The following is easily proved:
semidecidable. (2) Moreover, this non-constructivity in the
theorem is unavoidable. In fact, if we had a constructive
procedure for finding;, for every finiteb, then we would

be able to semidecide contextual equivalence for finite el-
ements, becaude= ciff xy5(c) = T = x7.(b). As all
elements of finitary PCF are finite, and contextual equiva- Proposition 4.22. For total f € (0 — Baire) andx € o,
lence is co-semidecidable for finitary PCF, this would give  ve ¢ N3§ € N Vtotaly € 0, 2 =5 y = () = f(y).
a decision procedure for equivalence, contradicting [14].

Lemma 4.21. Defineid,,: Baire — Baire byid,(s) =
Ai.ifi < n then s(i) else L. Thenid,(s) is finite and
aboveid,,(s), and ifs, ¢t € Baire are total then

id,(s) Ct = s=,t.

Proof. Becaused,(f(x)) is finite and belowf (x), there
We now develop an operational version of the Kleene— is ¢ such that alreadyd.(f(z)) £ f(ids(z)) by Propo-

Kreisel density theorem for total elements [7]. sition 4.5. Ifz =5 y then f(ids(z)) = f(ids(y)) and
henceid.(f(x)) C f(ids(y)) C f(y). By Lemma 4.21,

Definition 4.18. An element of ground type i®tal iff it is f(z) = f(y), as required. |

maximal. An elemenf € (o — 7) istotal iff f(z) € Tis o

total whenever: € o is total. An element of typéo x 7) Similarly, we have:

is total iff its projections intor andr are total. Proposition 4.23. For any totalf € (¢ — ~) and any total

. x € o, wherey € {Nat,Bool},
It is easy to see that any type has a total element. In 7 ey € { }

order to cope with the fact that the only total elementof JeNViotaly €0, z =5y = f(z) = f(y).

namelyoo, is defined by fixed-point recursion, we need:
5. Compact sets

Lemma 4.19. If - is an element of any type defined from The intuition behind the topological notion of compact-

total elementsyy,...,y, in such a way that the only oc- . . )
. . . : ness is that a compact set behaves, in many important re-
currences of the fixed-point combinator inare those of e - L
. : spects, as if it were a set of finite cardinality — see e.g. [11].
Y1, - -, Yn, it @NY, thene is total.

The official topological definition, which is more obscure,

Proof. Define a term with free variables to be total if every Says that a subs€} of a topological space is compact iff it
instantiation of its free variables by total elements producesSatisfies the Heine—Borel property: any collection of open
a total element, and then proceed by induction on the for-S€ts that cover§ has a finite subcollection that already cov-

mation ofz fromyy, ..., yn. 0 ersQ. Inorderto arrive at an operational notion of compact-
ness, we reformulate this in two stages.
Theorem 4.20. Every finite element is below some total el- (1) Any collection of open sets of a topological space can

ement. Hence any inhabited open set has a total element. be made directed by adding the unions of finite subcollec-
tions. Hence a s&) is compact iff every directed cover ¢f
by open sets includes an open set that already cayers

(2) Considering the Scott topology on the lattice of open

Proof. For each typer and eachn € N, define programs
FT:wo— ((r—71)—>7)andG.: (r — 1) — 7 hy

F(z)(f) =if x > 0 then f(F(z — 1)(f)), sets of the topological space, this amounts to saying that the
Gn(f) = f(t) for some chosene 7 total. collection of open set& with Q C U is Scott open in this
ThenF(o0) = fix, F(n) C G,, andG,, is total. lattice.
Now, given a finite elemeritof any type, choose a fresh Thus, this last reformulation considers open sets of open

syntactic variable: of typew, and define a terrhfrom b by sets. We take this as our definition, with “Scott open” re-
replacing all occurrences ¢ix” by the termF'7 (z). Then placed by “open” in the sense of Definition 3.5: we say that
b = (\z.b)(c0). Becausé is finite, there is some € N a collection/ of open sets of a type is open if the collec-
such that already = (\z.b)(n). tion {xu | U € U} is open in the function typ&r — X).



Lemma 5.1. For any set@ of elements of a type, the compact set, then, considerifige (Baire — Nat) defined

following two conditions are equivalent: by f(s) = s(0), Proposition 5.4(1) would entail that is
1. The collection{U open| @ C U} is open. compact inlat, again producing a contradiction. O
2. ThereigVq) € ((¢ — ¥) — X) such that

Vo(p) = T <= px) = Tforallz € Q. The above proof relies on a continuity principle rather

than on recursion theory. Thus, compactnesi df Nat
Proof. Vo = xu forid = {xv | Q C U}, because if fails even if the language includes an oracle for the Halt-
p=xuthenQ CU <= p(z)=Tforallz Q. O ing Problem. Taking Lemma 5.1(1) as the formulation of

compactness, by Theorem 4.15 and Lemma 4.14, we have:
Definition 5.2. We say that a s&p of elements of a type

is compactf it satisfies the above equivalent conditions. In Proposition 5.6. An open set is compact iff it has finite
this case, for the sake of clarity, we writ¢# € Q....” characteristic. Hence every open set is a rational union of

instead of Y (Az....)" compact open sets.

Lemma 51(2) gives a sense in which a compact set be- Armed with the results that we have so fal’, itis easy to
haves as a set of finite Cardina]ity: itis possib|e to univer- See that if an open set has finite characteristic then it is the
sally quantify over it in a mechanical fashion. Hence every upper set of a finite set of finite elements. The simplest non-
finite set is compact. Examples of infinite compact sets will trivial example of a compact set, which is a manifestation
be given shortly. By Lemma 5.1(1), compact sets satisfy Of the “one-point compactification of the discrete space of

the “rational Heine—Borel property”, because open sets arehatural numbers”, is given in the following proposition.
rationally Scott open: We regard function types of the forfNat — o) as

sequence types and define “head”, “tail” and “cons” con-
Proposition 5.3. If @ is compact and/,, is a rational chain structs for sequences as follows:

of open sets witl)) C J,, Uy, then there is: € N such that hd(s) = s(0) tl(s) = Ni.s(i + 1)
already@ C U,. ' ,

n s = M.if i == 0 then n else s(i — 1).

Further properties of compact sets that are familiar from We also use familiar notations such@sl* as shorthands
classical topology hold for our operational notion [8]: for evident terms such as. if i < n then 0 else 1.
Proposition 5.4. Proposition 5.7. The setN,, of sequences of the forms

1. Foranyf € (0 — 7) and any compact sé} in o, the ~ 0"1* and0“ is compact irBaire.
setf(Q) = {f(z) | = € Q} is compactirv. Proof. Define, omitting the subscripi,,, for v,

2. IfQis compactinr and R is compact inr, then@ x R

is compact inz x . Y(p) = p(if p(1¥) A V¥s.p(0 :: s) then t),

3. If Q is compact i andV is open inr, then wEeret is some element df .. More formally,V = fix(F')
NQV)E{felo—7)]fQCV} where ,
is open in(c — 7). F(A)(p) = p(if p(1¢) A A(As.p(0 :: s)) then t).
We must show that, for any givenV(p) = Tiff p(s) =T
Proof. (1):vy € f(Q).p(y) = Yz € Q.p(f(x)). forall s € Noc.
(2):Vz € Q@ x Rp(z) =V € QVy € R.p(z,y). («<): The hypothesis givep(0¥) = T. By Proposi-
@) xnwv(f) =Yz € Qxv(f(x)) . D tion 4.5, there i such that already(id,,(0~)) = T. But

id, (0¢)(z) = 0 if ¢ < n andid,(0¥)(¢) = L otherwise.
Using this and monotonicity, a routine proof by induction
on k shows that ifp(id; (0¢)) = T then F*(L)(p) = T.
The result hence follows from the fact that (1) C V.

(=): By rational continuity, the hypothesis implies that
Proposition 5.5. The total elements dfat and Baire F"(L)(p) = T for somen. A routine, but slightly la-

The set ofall elements of any type is compact, but
for trivial reasons:p(z) = T holds for allz € o iff it
holds forz = L, by monotonicity, and hence the definition
V. (p) = p(L) gives a universal quantification program.

don't form compact sets. borious, proof by induction o shows that, for all, if

_ B Fk(1)(q) = T theng(s) = T forall s € N.. O
Proof. It is easy to construgf € (& x Nat — X) such that
g(x,n) = Tiff z > nforall z € wandn € N. If the total In order to construct more sophisticated examples of
elementN of Nat did form a compact set, then we would compact sets, we need the techniques of Section 6 be-
haveu € (w — X) defined byu(x) = Vn € N.g(z,n) low. Before that, we consider someiformcontinuity

that would satisfyu(k) = L forall k € Nandu(co) =T principles (cf. Propositions 4.22 and 4.23).  Define
and hence would violate rational continuity. Therefbrés s =, t < id,(s) = id,(¢) for id,,: Baire — Baire
not compact ilNat. If the total elements dfaire formed a asinLemma 4.21.



Lemma5.8. For f € (0 — Baire) total and@ a compact
set of total elements of,
Ve € N 36 € NVz € Q, f(x) =c f(ids(z)).

Proof. For any givene € N, it is easy to construct a pro-
grame € (Baire X Baire — ) such that

() if s,t € Baire are total thers =. ¢t = e(s,t) = T,

(i) forall s,t € Baire, e(s,t) =T = s = t.
If we definep(z) = e(f(z), f(x)), then, by the hypothesis
and (i),Vo(p) = T. By Proposition 4.5Y¢(ids(p)) = T
for somed € N, and, by Proposition 4.1Qds(p)(xz) =
p(ids(x)). It follows thate(f(ids(z)), f(ids(z))) = T for
all z € Q. By monotonicity,e( f(x), f(ids(x))) = T, and,
by (i), f(z) = f(ids(x)), as required. O
Theorem 5.9. For f € (o — Baire) total and@ a com-
pact set of total elements of

Vee NI eNVe,y € Q, z =5 y = f(z) = f(y).

Proof. Givene € N, first construct € N as in Lemma 5.8.
Forz,y € Q,if x =5 ythenid, (f(x)) = id.(f(ids(x))) =
ide(f(ids(y))) E f(y). By Lemma 4.21f(x) =c f(y), as
required. O

Similarly, we have:

Proposition 5.10. For v € {Nat,Bool}, f € (¢ — 7)
total and@ a compact set of total elementsmgf

1. 30 e NVz € Q, f(z) = f(ids(x)),

2. eNVz,yeQ, =5y = f(z)=f(y).

The following is used in Section 7 below:

Definition 5.11. For f andQ as in Proposition 5.10, we re-

ferto the least € N such that (1) (respectively (2)) holds as

the big (respectivelysmal) modulus of uniform continuity

of f atQ.

6. A data language

The following is folklore and goes back to Milner [16]:

Theorem 6.2. For terms inP, equivalence with respect to
groundP-contexts and equivalence with respect to ground
D-contexts coincide.

Proof. For any oraclé?, id,,(Q2) is extensionally equivalent

to some program, for both notions of equivalence. Hence
for any element: of any type,id,, () is equivalent to some
program. To conclude, apply Proposition 4.4. O

On the other hand, the notion of totality changes:

Theorem 6.3. There are programs that are total with re-
spect toP but not with respect t®.

This kind of phenomenon is again folklore. There are
programs of type e.gtantor — Bool, whereCantor o
(Nat — Bool), that, when seen from the point of view of
the data language, map programmable total elements to to-
tal elements, but diverge at some non-programmable total
inputs. The construction uses Kleene trees [5], and can be
found in [8, Chapter 3.11]. This is analogous to the fact
that totality with respect t& also disagrees with totality
with respect to denotational models. A proof for the Scott
model can be found in [22]. For the intriguing relationship
between totality in the Scott model with sequential compu-
tation, see [17].

7. Sample applications

We use the data languag@®to formulate specifications
of programs in the programming language As in Sec-
tion 6, the notation: € o means that is a closed term of
typeo in D. This is compatible with the notation of Sec-
tions 3-5 by takingD as the underlying language for them.
Again maintaining compatibility, we take the notions of to-
tality, open set and compact set with respecdtaTo indi-

In an operational setting, one usually adopts the same e
language to construct programs of a type and to express dat§at€ that openness or compactness of a set is witnessed by
of the same type. But consider programs that can accept ex@ Program rather than just an element of the data language,
ternally produced streams as inputs. Because such stream€ Sayprogrammablyopen or compact.
are not necessarily definable in the language, it makes sense AS for the Baire type, we think of the elements of the
to consider program equivalence defined by quantification C&ntor type as sequences, and, following topological tradi-

over more liberal “data contexts” and ask whether the samelion, in this context we identify the booleansie andfalse
notion of program equivalence is obtained. with the number$® and1 (it doesn’t matter in which order).

The following is our main tool in this section:
Definition 6.1. Let P be the programming language intro-
duced in Section 2, perhaps extended with parallel features,Theorem 7.1. The total elements of the Cantor type form a
but not with oracles, and 182 be P extended with oracles.  programmably compact set.
We think of D as adata languagdor the programming lan- o _ ) o
guageP. The idea is that the closed terms Bfare pro- Proof. This is proved and discussed in detail in [8, Chap-

gramsand those oD are (higher-typellata Accordingly, ter 3.11], and hence we only provide the construction of the
in this context, the notation € o means that is a closed ~ universal quantification program, with one minor improve-
term of types in the data language. Of course, this includes Ment. We recursively definte: (Cantor — ¥) — X by

the possibility that: is a program. V(p) = p(0 :: if Vs.p(0 :: s) AVs.p(1 :: s) then t),



wheret is some programmable total element@intor. Simpson [24] applied Corollary 7.4 to develop surprising
The correctness proof for this program is similar to that sequential programs for computing integration and supre-
of Proposition 5.7, but involves an invocation obKig's mum functionals([0,1] — R) — R, with real numbers
Lemma. O represented as infinite sequences of digits. The theory de-
. . veloped here copes with that, again allowing a direct opera-
Remark 7.2. If the data language is taken to BRitself,  jonq) transation of the original denotational development.
Theorem 7.1 fails for the same reason that leads to The-gqr 50k of space to introduce the necessary background on
orem 6.3 [8, Chapter 3.11]. Of course, the above pro- o5 nymper-computation, we illustrate the main idea by re-
gramV: (Cantor — %) — ¥ can still be written down. 5 myjating the development of the supremum functional,
But it no longer satisfies the required specification given in .+t the closed unit interval and the real line replaced by
Lemma 5.1(2). In summary, itis easier to universally quan- \ne cantor and Baire types, and with the natural order of
tify over all total elements of the Cantor type than just OVer y,q reas replaced by the lexicographic order on sequences.
theprogrammable)nes, to the extent that the former canbe 1,4 lexicographic orderon the total elements of the
achieved by a program but the latter cannot. Baire type is defined by < t iff whenevers # t, there

Interestingly, the programmability conclusion of Theo- iS7 € N with s(n) < #(n) ands(i) = ¢(i) forall i < n.
rem 7.1 is not invoked for the purposes of this section, be- L emma 7.6. There is a total program
cause we only apply compactness to get uniform continuity. max: Baire X Baire — Baire

The following theorem is due to Berger [6], with gych that
domain-theoretic denotational specification and proof. As 1. max(s,t) is the maximum of and ¢ in the lexico-
discussed in the introduction, the purpose of this section is graphic order for all totals, ¢ € Baire, and
to illustrate that such specifications and proofs can be di- 2. (s,t) =, (s',t') = max(s,t) =, max(s’,t) for all
rectly understood in our operational setting, and, moreover, s,t, 8,1 € Baire (total or not) and alle € N.

apply tosequentiaprogramming languages. Proof. Define

Theorem 7.3. There is a total program max(s,t) = ifhd(s) == hd(?)
¢ e: (Cantor — Bool) — Cantor . ; then hd(s) :: max(tl(s), t1(t))
GRS e ) > ) e s .
' p ’ The easy details of the correctness proof are omitted.]

Proof. Define

e(p) =1ifp(0 :: e(As.p(0:: 5))) then 0:e(As.p(0::s)) Theorem 7.7. There is a total program

else 1:e(Asp(l s 5)) sup: (Cantor — Baire) — Baire
The required property is established by induction on the SUch that for every totaf € (Cantor — Baire),
big modulus of uniform continuity of a total elemepte sup(f) = sup{f(s) | s € Cantor istotal},
(Cantor — Bool) at the set of total elements, using the fact Where the supremum is taken in the lexicographic order.
that if p has modulus +1 thenAs.p(0 :: s) andAs.p(1 :: s) Proof. Let t € Cantor be a programmable total element
have modulus, a}nd that whep has modulus zergy( L) is and define
total and hencg is constant. O sup(f) = let h = hd(f(t)) in
This gives rise to universal quantification for boolean- if V total s € Cantor. hd(f(s)) ==h

valued rather than Sierpinski-valued predicates: then h :: sup(As. t1(f(s)))
Corollary 7.4. There is a total program else max(sup(As. f(0 :: s)),sup(As. f(1 = 5))),

V: (Cantor — Bool) — Bool where let x = ...in M” stands for ‘(Ax.M)(...)".
such that for every totgl € (Cantor — Bool), One shows by induction on € N that, for every total

V(p) = true < p(s) = true for all total s € Cantor. f € (Cantor — Baire),

, N sup(f) =, sup{f(s) | s € Cantor is total}.
groof. First deflnﬁﬂh (Czln';,or N B°°31) — Bool by The base case is trivial. For the induction step, one proceeds
(p) = p(e(p)) and then defin&(p) = —3s.~p(s). J by a further induction on the small modulus of uniform con-

Corollary 7.5. The function typéCantor — Nat) hasde-  tinuity of hdof: Cantor — Nat at the total elements of

cidable equality for total elements. Cantor, crucially appealing to the non-expansiveness con-
dition given by Lemma 7.6(2). One uses the facts that
Proof. Define a program if hdof has modulusy + 1 thenhdols.f(0 :: s) and
(==): (Cantor — Nat) x (Cantor — Nat) — Bool hdoAs.f(1 :: s) have modulug, and thatithd o f has mod-

by (f == ¢g) =V total s € Cantor.f(s) == g(s). O ulus0 thenhd(f(s)) = hd(f(¢)) for all total s and¢t. O



Theorems 7.3 and 7.7 rely on the compactness of the to- [4]
tal elements of the Cantor type. Arguments similar to that
of Proposition 5.5 show that these two theorems fail if the
Cantor type is replaced by the Baire space. (5

[6]
8. Open problems and further developments

The Tychonoff theorem in classical topology states that 7
a product of arbitrarily many compact spaces is compact. A 8
proof that this holds in a computational setting for count-
ably many compact spaces is developed in [8, Chapter 13]. [9]
Moreover, the given implementation is sequential. How-
ever, the proposed proof is for the specification of the pro- 1
gram interpreted in the Scott model. At the time of writing,
we are not able to apply our techniques to derive a correct-[11]
ness proof of the program for an interpretation of the speci-
fication in the sequential data language considered here.
Our use of sequence typ@gat — o) can be easily re-
placed by lazy lists by applying the bisimulation techniques [13]
of [9] to prove the correctness of evident programs that im-
plement the SFP property for lazy lists. There is no dif- [14]
ficulty in developing the results of this paper in a call-by-
value setting, and we believe we can also handle recursivd®!
types. But computational features such as state and control,
and non-determinism and probability seem to pose genuine[16]
challenges. 171
In the presence of probability or of abstract data types for
real numbers, types won't be algebraic in general and hencehg]
a binary notion of finiteness, analogous to the way-below
relation in classical domain theory, needs to be developed.
The avoidance of syntactic manipulations suggests that[19]
the theory worked out in this paper could be developed in
a general axiomatic framework rather than just term mod-
els. In particular, this would make our results available to [20]
models that are not constructed from domain-theoretic or
topological data, e.g. games models.
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