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Abstract

A number of authors have exported domain-theoretic techniques from denotational
semantics to the operational study of contextual equivalence and order. We further de-
velop this, and, moreover, we additionally export topological techniques. In particular,
we work with an operational notion of compact set and show that total programs with
values on certain types are uniformly continuous on compact sets of total elements.
We apply this and other conclusions to prove the correctness of non-trivial programs
that manipulate infinite data. What is interesting is that the development applies to
sequential programming languages, in addition to languages with parallel features.

1 Introduction
Domain theory and topology in programming language semantics have been applied to
manufacture and study denotational models, starting with the Scott model of PCF [34]. As
is well known, for a sequential language like this, the match of the model with the opera-
tional semantics is imprecise: computational adequacy holds but full abstraction fails [31].
The main achievement of the present work is a reconciliation of a good deal of domain
theory and topology with sequential computation. This is accomplished by side-stepping
denotational semantics and reformulating domain-theoretic and topological notions directly
in terms of programming concepts, interpreted in an operational way.

Regarding domain theory [5, 13], we replace directed sets by rational chains, which we
observe to be equivalent to programs defined on a “vertical natural numbers” type. Many
of the classical definitions and theorems go through with this modification. In particular,

1. rational chains have suprema in the contextual order,

2. programs of functional type preserve suprema of rational chains,

3. every element (closed term) of any type is the supremum of a rational chain of finite
elements,

4. two programs of functional type are contextually equivalent iff they produce a con-
textually equivalent result for every finite input.

Moreover, we have an SFP-style characterization of finiteness using rational chains of de-
flations, a Kleene-Kreisel density theorem for total elements, and a number of continuity
principles based on finite elements.

We work with a restricted kind of increasing chain because we must: Dag Normann [27]
has shown that, even in the presence of oracles (see below), increasing chains in the contex-
tual order fail to have suprema in general. A counter-example is given for type level 3. On
the other hand, it is known that rational chains always have suprema, even in the absence
of oracles — see e.g. [29].
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Regarding topology [25, 37], we define open sets of elements via programs with val-
ues on a “Sierpinski” type, and compact sets of elements via Sierpinski-valued universal-
quantification programs. Then

1. the open sets of any type are closed under the formation of finite intersections and
rational unions,

2. open sets are “rationally Scott open”,

3. compact sets satisfy the “rational Heine–Borel property”,

4. total programs with values on certain types are uniformly continuous on compact
sets of total elements.

In order to be able to formulate certain specifications of higher-type programs without
invoking a denotational semantics, we work with a “data language” for our programming
language, which consists of the latter extended with first-order “oracles”. The idea is to
have a more powerful environment in order to get stronger program specifications. We
observe that program equivalence defined by ground data contexts coincides with program
equivalence defined by ground program contexts, but the notion of totality changes.

It is worth mentioning that the resulting data language for PCF defines precisely the
elements of games models [4, 19], with the programming language capturing the effective
parts of the models. Similarly, the resulting data language for PCF extended with parallel-
or and Plotkin’s existential quantifier defines precisely the elements of the Scott model,
again with the programming language capturing the effective part [31, 12]. But we don’t
rely on these facts.

We illustrate the scope and flexibility of the theory by applying our conclusions to
prove the correctness of various non-trivial programs that manipulate infinite data. We take
one such example from [35]. In order to avoid having exact real-number computation as
a prerequisite, as in that reference, we consider modified versions of the program and its
specification that retain their essential aspects. We show that the given specification and
proof in the Scott model can be directly understood in our operational setting.

Although our development is operational, we never invoke evaluation mechanisms di-
rectly. We instead rely on known extensionality, monotonicity, and rational-chain princi-
ples for contextual equivalence and order. Moreover, with the exception of the proof of the
density theorem, we don’t perform syntactic manipulations with terms.

1.1 Related work
The idea that order-theoretic techniques from domain theory can be directly understood
in terms of operational semantics goes back to Mason, Smith, Talcott [23] and Sands (see
Pitts [29] for references). Already in [23], one can find, in addition to rational-chain prin-
ciples, two equivalent formulations of an operational notion of finiteness directly imported
from domain theory. In addition to redeveloping their formulations in terms of rational
chains rather than directed sets of terms, here we add a topological characterization, also
imported from domain theory (Theorem 4.16).

The idea that topological techniques can also be directly understood in terms of op-
erational semantics, and, moreover, are applicable to sequential languages, is due to the
first-named author [12]. In particular, we have taken our operational notion of compactness
and some material about it from that reference. A main novelty here is a uniform-continuity
principle, which plays a crucial role in the sample applications given in Section 7. This is
inspired by unpublished work by Andrej Bauer and Escardó on synthetic analysis in (sheaf
and realizability) toposes.

The idea of invoking a data language to formulate higher-type program specifications
in a sequential operational setting is already developed in [12] and is related to relative
realizability [7] and TTE [41].
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1.2 Organization
Section 2: Language, oracles, extensionality, monotonicity and rational chains.
Section 3: Rational chains, open sets and continuity principles.
Section 4: Finite elements, continuity principles and density of total elements.
Section 5: Compact sets and uniform-continuity principles.
Section 6: A data language, contextual equivalence and totality.
Section 7: Sample applications.
Section 8: Remarks on parallel convergence.
Section 9: Open problems and further work.

2 Pillars
As stated in the introduction, we never invoke evaluation mechanisms explicitly in our in-
vestigation of contextual order and equivalence. This is possible due to the existence of a
large body of previous work by other authors, which we summarize here and take as our
starting point. Officially, we investigate a particular “base” programming language and
some extensions of a restricted form. To a large extent, in practice, what matters for our
development is that, whatever language we are considering, the properties discussed in this
section hold. From this point of view, our work can be considered to be axiomatic, and it
may well be worthwhile to pursue this direction. However, at this stage, our aim is to de-
velop our theory assuming an operational foundation for a restricted kind of programming
language.

Different authors have defined the syntax and the operational semantics of our base
language in a multitude of different, but equivalent ways. We don’t wish and don’t need
to commit ourselves to a particular formulation. Our aim is to be mathematically rigorous
but not formal, where our notion of rigour includes the requirement that the arguments are
routinely formalizable when this is required.

2.1 The base programming language
We work with a simply-typed λ-calculus with function and finite-product types, fixed-point
recursion, and base types Nat for natural numbers and Bool for booleans. We regard this
as a programming language under the call-by-name evaluation strategy. In summary, we
work with PCF extended with finite-product types [31, 15, 29, 39]. Other possibilities are
briefly discussed in Section 9.

2.2 Inessential, but convenient, extensions of the base language
For clarity of exposition, we explicitly include a Sierpinski base type S and a vertical-
natural-numbers base type ω, although such types can be easily encoded in other exist-
ing types if one so desires (e.g. via retractions [33]). The type S will have elements ⊥
(non-terminating computation) and � (terminating computation). Intuitively, we think of
programs of type ω as clocks that either tick for ever or else tick finitely often and then fail,
without informing us that the next tick will never take place (see Section 2.8 below for a
precise mathematical statement).

What is relevant for our purposes is that, for any type σ, functions σ → S will corre-
spond to semi-decidable or open sets of elements of σ, and functions ω → σ will corre-
spond to certain ascending chains of elements of σ in the contextual order (in fact, precisely
the rational chains, to be defined below). In this sense, S will classify open sets (this be-
longs to the realm of topology) and ω will index rational chains (this belongs to the realm
of domain theory).
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Formally, we have the following term-formation rules for these two types:

(1) � : S is a term.

(2) If M : S and N : σ are terms then (if M then N) : σ is a term.

(3) If M : ω is a term then (M + 1): ω, (M − 1) : ω, and (M > 0) : S are terms.

Notice that there is no “else” clause in the above construction. The only value (or canonical
form) of type S is �, and the values of type ω are the terms of the form M + 1. The role
of zero is played by divergent computations, and a term (M > 0) can be thought of as a
convergence test. The big-step operational semantics for these constructs is given by the
following evaluation rules:

(i) If M ⇓ � and N ⇓ V then (if M then N) ⇓ V .

(ii) If M ⇓ N + 1 and N ⇓ V then M − 1 ⇓ V .

(iii) If M ⇓ M � + 1 then M > 0 ⇓ �.

For any type σ, we define ⊥σ = fixx.x, where fix denotes the fixed-point recursion con-
struct. In what follows, if f : σ → σ is a closed term, we shall write fix f as an abbreviation
for fixx.f(x).

2.3 A data language
We also consider the extension of the programming language with the following term-
formation rule:

(4) If Ω : N → N is any function, computable or not, and N : Nat is a term, then
ΩN : Nat is a term.

Then the operational semantics is extended by the following rule, which generalizes the
standard rules for evaluation of first-order constants:

(iv) If N ⇓ n and Ω(n) = m then ΩN ⇓ m.

We think of Ω as an external input or oracle, and of the equation Ω(n) = m as a query
with question n and answer m.

Of course, the extension of the language with oracles is no longer a programming lan-
guage. We shall regard it as a data language in Section 6, with the purpose of defining an
alternative, better behaved notion of totality for programs. To emphasize that a closed term
doesn’t include oracles, we refer to it as a program.

2.4 Underlying language for Sections 3–5
We take it to be either (1) the base programming language introduced above, with the
convenient extensions, (2) its extension with oracles, (3) its extension with parallel fea-
tures, such as parallel-or and Plotkin’s existential quantifier [31], or parallel-convergence
discussed below, or else (4) its extension with both oracles and parallel features. The con-
clusions of those sections hold for the four possibilities, at no additional cost.

2.5 Full evaluation rules for the language
As discussed above, this work considers the call-by-name semantics. Apart from possibly
the rules for the types S and ω and for oracles, given above, the evaluation rules are well
known and standard and can be found e.g. in Plotkin [31], Gunter [15], Pitts [29] or Stre-
icher [39], among a multitude of possible references, and we omit them because we never
invoke them explicitly. As mentioned in the introduction, we instead rely on extensionality,
monotonicity, and rational-chain principles for contextual equivalence and order, discussed
below, which follow from them [29].
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2.6 Contextual equivalence and (pre)order
Recall that two terms M and N of the same type, possibly with free variables, are said to
be contextually equivalent, here written

M = N,

if for any ground context C[−], with a hole (−) of the same type as M and N , that captures
all the free variables of M and N , either both C[M ] and C[N ] diverge or else both evaluate
to the same value. See Pitts [29] for formal details.

Similarly, M is below N in the contextual order, written

M � N,

if for every ground context C[−] as above, if C[M ] evaluates to a value then C[N ] evaluates
to the same value (i.e. either C[M ] diverges or else both C[M ] and C[N ] converge to the
same value). Clearly,

M = N ⇐⇒ M � N ∧N � M.

Among our four base types Nat, Bool, S and ω, only the first three are considered to be
ground for the purpose of the above definitions. With this understanding of ground type,
one has

if M is ground and closed, then M evaluates to a value v iff M = v,

by considering the identity context. Moreover, it is well known that it is enough to consider
the ground type S for the above definition [29, Remark 2.10]:

M � N iff for any context C[−] : S that captures the free variables of M
and N , if C[M ] = � then C[N ] = �,

because � is the only value of type S.
As is well-known, these two relations typically become strictly coarser (they hold less

often) when the language is extended (e.g. with parallel features or effects), but we ob-
serve that they don’t change in the particular case the language is extended with oracles
(Section 6.2).

2.7 Elements of a type
By an element of a type we mean a closed term of that type. We adopt usual set-theoretic
notation for the elements of a type in the sense just defined. For example, we write x ∈ σ
and f ∈ (σ → τ) to mean that x is an element of type σ and f is an element of type σ → τ .
We occasionally refer to elements of function types as functions. With this notation, the
above definitions and observations specialize to

x � y in σ iff p(x) = � =⇒ p(y) = � for every p ∈ (σ → S).

In one direction, given p one considers to context C[−] = p(−), and, in the other, given a
context C[−], one considers the predicate p(z) = C[z] (or, more formally, p = λz.C[z]).
For this argument, it is important that we are considering a call-by-name language.

2.8 The elements of S
The elements ⊥ and � of S are contextually ordered by

⊥ � �,

they are contextually inequivalent, and any element of S is equivalent to one of them. We
think of S as a type of outcomes of observations or semi-decisions, with � as “observable
true” and ⊥ as “unobservable false”.
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2.9 Classical domain theory and topology
Comments by some readers of draft versions of this paper have prompted us to clarify:
when we say “classical” domain theory or topology, we don’t mean domain theory or topol-
ogy developed using classical logic, as opposed to intuitionistic or constructive logic, but
rather domain theory and topology as they are traditionally developed, as opposed to the
way they are developed here in an operational setting.

2.10 Parallel convergence
Among a number of parallel features discussed in the literature, the following turns out to
play a distinguished role in showing that certain results of classical domain theory fail in a
sequential operational setting (summarized in Theorem 8.1). A function

(∨) ∈ (S × S → S)

such that for all elements p, q ∈ S,

p ∨ q = � ⇐⇒ p = � or q = �

is known as parallel convergence or weak parallel-or. For example, such a function is de-
finable from parallel-or or from parallel-exists, or can be introduced directly by a constant
with appropriate evaluation rules.

2.11 The elements of ω

We denote by ∞ the element fixx.x + 1 of ω, and, by an abuse of notation, for n ∈ N
we write n to denote the element succn(⊥) of ω, where succ(x) = x + 1. The elements
0, 1, 2, . . . , n, . . . ,∞ of ω are all contextually inequivalent, and any element of ω is con-
textually equivalent to one of them. They are contextually ordered by

0 � 1 � 2 � . . . � n � . . . � ∞.

C.f. Section 3.1 below. Notice that 0 − 1 = 0, (x + 1) − 1 = x, (0 > 0) = ⊥ and
(x + 1 > 0) = � hold for x ∈ ω. In particular, ∞− 1 = ∞ and (∞ > 0) = �.

2.12 Extensionality and monotonicity
Contextual equivalence is a congruence: for any f, g ∈ (σ → τ) and x, y ∈ σ,

if f = g and x = y then f(x) = g(y).

Moreover, application is extensional:

f = g if f(x) = g(x) for all x ∈ σ.

Regarding the contextual order, we have that application is monotone:

if f � g and x � y then f(x) � g(y).

Moreover, it is order-extensional:

f � g if f(x) � g(x) for all x ∈ σ.

Standard congruence, extensionality and monotonicity principles also hold for product
types [29]. Additionally, ⊥σ is the least element of σ.
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2.13 Rational chains
For any g ∈ (τ → τ) and any h ∈ (τ → σ), the sequence h(gn(⊥)) is increasing and has
h(fix g) as a least upper bound in the contextual order:

h(fix g) =
�

n

h(gn(⊥)).

A sequence xn of elements of a type σ is called a rational chain if there exist g ∈ (τ → τ)
and h ∈ (τ → σ) with

xn = h(gn(⊥)).

2.14 Proofs
The facts stated in this background section are all well known. The extensionality, mono-
tonicity and rational-chain principles follow directly from Milner’s construction [24]. Even
though full abstraction of the Scott model fails for sequential languages, proofs exploiting
computational adequacy are possible [20] (see [28]). Proofs using game semantics can be
found in [4, 19], and operational proofs can be found in [29, 30] (where an earlier oper-
ational proof of the rational-chains principle is attributed to Sands). For a call-by-value
untyped language, an operational proof of the rational-chains principle was previously de-
veloped in [23]. Regarding the above description of the elements of the vertical-natural-
numbers type, a denotational proof using adequacy is easy, and operational proofs are ob-
tained applying [14] or [29] (see [18]).

2.15 Notes
As we have just seen, there are a variety of ways of establishing the operational properties
we have listed. Two cases are of particular interest here. Firstly, Milner’s fully abstract
model of PCF has been criticized for being syntactical. However, an operationally minded
reader is entitled to formulate the opposite complaint, given the amount of domain theory
present in Milner’s paper [24]. In truth, Milner’s arguments are hybrid, and, as we shall
argue in Section 4.1, they are precursors of operationally-based domain theory. Secondly,
although classical domain theory doesn’t give a fully abstract model of PCF, it does give
a fairly explicit and applicable characterization of contextual equivalence [20, 28]. What
matters here is not so much whether or not one has operational proofs of operational state-
ments, but whether one has proofs of operational statements. For our starting point, what is
relevant is that the languages under consideration have the properties stated in this section,
and not how they have been proved. But there is a purely operational starting point [29],
which some readers may prefer.

3 Rational chains and open sets
We begin by developing fundamental order-theoretic and topological properties of program
types. As discussed in the introduction, the theory developed here has some differences
with classical domain theory and topology, which arise from our desire of accommodating
sequential programming languages.

3.1 Order
We begin by showing that rational chains turn out to coincide with internally ω-indexed
chains:
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Lemma 3.1. The sequence 0, 1, 2, . . . , n, . . . in ω is a rational chain with least upper
bound ∞, and, for any l ∈ (ω → σ),

l(∞) =
�

n

l(n).

Proof. n = succn(⊥) and ∞ = fix succ.

Moreover, this is the “generic rational chain” with “generic least upper bound ∞” in
the following sense:

Lemma 3.2. A sequence xn ∈ σ is a rational chain if and only if there exists l ∈ (ω → σ)
such that for all n ∈ N,

xn = l(n),

and hence such that
�

n xn = l(∞).

Proof. (⇒): Given g ∈ (τ → τ) and h ∈ (τ → σ) with xn = h(gn(⊥)), recursively
define

f(y) = if y > 0 then g(f(y − 1)).

Then f(n) = gn(⊥) and hence we can take l = h ◦ f .
(⇐): Take h = l and g(y) = y + 1.

The above observation is crucial for our development, and seems to be new. The novelty
is slightly surprising, as both rational and ω-indexed chains have been considered for more
than twenty years, in operational semantics, game semantics, and synthetic and axiomatic
domain theory. In classical domain theory, ω is instead the generic ascending ω-chain, and
hence the above lemma explains why rational chains have a special status in our context.
As discussed in the introduction, in the absence of parallel features, ascending ω-chains
generally fail to have least upper bounds. Moreover, we observe in Remark 8.2 that there
are (trivial) ascending ω-chains that have a least upper bound but still fail to be rational.

Elements of functional type are “rationally continuous” in the following sense:

Proposition 3.3. If f ∈ (σ → τ) and xn is a rational chain in σ, then

1. f(xn) is a rational chain in τ , and

2. f(
�

n xn) =
�

n f(xn).

Proof. By Lemma 3.2, there is l ∈ (ω → σ) such that xn = l(n). Then the definition
l�(y) = f(l(y)) and the same lemma show that f(xn) is a rational chain. By two ap-
plications of Lemma 3.1, f(

�
n xn) = f(l(∞)) = l�(∞) =

�
n l�(n) =

�
n f(l(n)) =�

n f(xn).

Rather than a proposition, the above is a definition in classical domain theory, which
says what the morphisms are chosen to be. The following consequence is used in the proof
of Lemma 4.9 below.

Corollary 3.4. For any rational chain fn in (σ → τ) and any x ∈ σ,

1. fn(x) is a rational chain in τ , and

2. (
�

n fn)(x) =
�

n fn(x).

Proof. Apply Proposition 3.3 to the evaluation functional F ∈ ((σ → τ) → τ) defined by
F (f) = f(x).
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Again the situation in classical domain theory is different regarding the previous corol-
lary. Given suitable objects for the category, e.g. Scott domains or SFP domains, in order
to establish cartesian closedness one shows that the pointwise order on morphisms gives
the exponential or function space. To do that, one has to show, among several other things,
that the order has joins of ascending chains, and these turn out to be the pointwise joins, as
in the above corollary. Here, instead, cartesian closedness for programs modulo contextual
equivalence is seen to hold before one considers the notion of contextual order, because
we are working with the simply typed lambda-calculus under call by name. This is used to
derive the above corollary from the fact that all functions, and in particular evaluation, are
rationally continuous.

3.2 Topology
In domain-theoretic denotational semantics, Sierpinski-valued continuous maps are pre-
cisely the characteristic functions of Scott open sets. More generally, in classical topology,
the open sets are precisely those whose characteristic functions are continuous. We make
this fact into a definition [12], relying on the fact that all programs of functional type are
automatically continuous:

Definition 3.5. We say that a set U of elements of a type σ is open if there is χU ∈ (σ → S)
such that for all x ∈ σ,

χU (x) = � ⇐⇒ x ∈ U.

If such an element χU exists then it is unique up to contextual equivalence, and we refer to
it as the characteristic function of U . Notice that in this case U is closed under contextual
equivalence, i.e., any element equivalent to a member of U is also a member of U . For
example, the subset {�} of S is open, as its characteristic function is the identity, but
{⊥} is not, because a characteristic function would have to send ⊥ to � and � to ⊥,
violating monotonicity. We say that a sequence of open sets in σ is a rational chain if the
corresponding sequence of characteristic functions is rational in the type (σ → S).

The following says that the open sets of any type form a “rational topology”:

Proposition 3.6. For any type, the open sets are closed under the formation of

1. finite intersections and

2. rational unions.

Proof. (1): χT ∅(x) = � and χU∩V (x) = χU (x) ∧ χV (x), where ∧ is defined as

p ∧ q = if p then q.

(2): Because U ⊆ V iff χU � χV , we have that if l ∈ (ω → (σ → S)) and l(n) is the
characteristic function of Un, then l(∞) =

�
n χUn

= χS
n Un

.

However, unless the language has parallel features, the open sets don’t form a topology
in the classical sense.

Proposition 3.7. The following are equivalent:

1. For every type, the open sets are closed under the formation of finite unions.

2. Parallel convergence is definable in the language.

Proof. (⇑): χS ∅(x) = ⊥ and χU∪V (x) = χU (x) ∨ χV (x).
(⇓): The sets U = {(p, q) | p = �} and V = {(p, q) | q = �} are open in the type

S × S because they have the first and second projections as their characteristic functions.
Hence the set U ∪ V is also open, and so there is χU∪V such that χU∪V (p, q) = � iff
(p, q) ∈ U ∪ V iff (p, q) ∈ U or (p, q) ∈ V iff p = � or q = �. Therefore (∨) = χU∪V

gives the desired conclusion.
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Moreover, even if parallel features are included, closure under arbitrary unions fails in
general (but see [12, Chapter 4]). The following says that elements of functional type are
continuous in the topological sense:

Proposition 3.8. For any f ∈ (σ → τ) and any open subset V of τ , the set f−1(V ) =
{x ∈ σ | f(x) ∈ V } is open in σ.

Proof. If χV ∈ (τ → S) is the characteristic function of the set V then χV ◦ f ∈ (σ → S)
is that of f−1(V ).

In classical domain theory this is typically proved by explicit manipulation of the defi-
nition of Scott topology and of continuous map, but the above argument can be applied to
the classical setting. The following observation plays a crucial role in the proof of Theo-
rem 4.16:

Lemma 3.9. For x, y ∈ σ, the relation x � y holds iff x ∈ U implies y ∈ U for every
open subset U of σ.

Hence ↑x
def= {y ∈ σ | x � y} =

�{U open in σ | x ∈ U}.

Proof. This is a reformulation of the proposition stated in Section 2.7, and the conclusion
follows from the definition of intersection.

In classical topology, the above is the definition of the specialization order. In classical
domain theory, it is the fact that the information order coincides with the specialization
order of the Scott topology. The classical domain theoretic proof relies on the fact that the
lower set of any point, in the information order, is Scott closed, which may not be available
in our setting, as Proposition 3.10 shows. As the above (almost tautological) proof shows,
the definition of contextual order is essentially the same as the topological definition of
specialization order.

Proposition 3.10. If parallel features and oracles are not available, there are elements
whose lower sets fail to be closed.

Proof. (i) A function S × S → S is the characteristic function of the complement of the
lower set {⊥S×S} iff it is a parallel convergence function.

(ii) The characteristic function h : N → S of the Halting Set, H , exists in any of the
languages under consideration. Suppose χ ∈ ((N → S) → S) is a characteristic function
of the complement of the lower set of h. Then χ(f) = � iff f �� h iff there is n �∈ H
such that f(n) = �. Now, clearly there is a program fn ∈ (N → S) with a parameter
n such that fn(m) = � iff m = n. Define a program c : N → S by c(n) = χ(fn). By
construction, c is the characteristic function of the complement of H , which exists iff the
language has oracles.

On the other hand, if parallel-or and parallel-exists are available and the languages
includes oracles, it is the case that lower sets of points are closed, simply because in this
case the language is equivalent to its Scott model, by Plotkin’s definability results [31].
This argument is spelled out in detail in [12] and [39].

Open sets are “rationally Scott open”:

Proposition 3.11. For any open set U in a type σ,

1. if x ∈ U and x � y then y ∈ U , and

2. if xn is a rational chain with
�

xn ∈ U , then there is n ∈ N such that already
xn ∈ U .
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Proof. (1): By monotonicity of χU .
(2) By rational continuity of χU : If

�
xn ∈ U then � = χU (

�
n xn) =

�
χU (xn)

and hence � = χU (xn) for some n, i.e., xn ∈ U .

Remark 3.12. Cf. Remark 6.5, which refers back to this remark. In classical domain
theory, the above proposition is the definition of the Scott topology. Then one argues,
informally, that (Scott) open sets correspond to semi-decidable properties (Smyth [37]),
or observable properties (Abramsky [1, 3]), or affirmable properties (Vickers [40]). Here
we have defined open sets to be semi-decidable sets and then mathematically proved that
they are (rationally) Scott open. However, when the language under consideration is a
data language in the sense of Sections 2.3 and 6, rather than a programming language, it
makes sense to refer to semi-decidable properties as observable properties, reserving the
terminology semi-decidable for the notion defined with respect to a programming language.
This may, indeed, be a good mathematical articulation of the distinction between the two
notions, compatible with the discussion in the above work of Abramsky’s.

4 Finite elements
We develop a number of equivalent formulations of a notion of finiteness, all of them
directly imported from classical domain theory. We also give a number of technical appli-
cations, which in turn have applications to program verification, reported in Section 7.

Corollary 4.4 says that an element b is finite if and only if any attempt to build b as
the least upper bound of a rational chain already has b as a building block. The official
definition is a bit subtler, and, apart from the restriction to rational chains, is the same as in
classical domain theory:

Definition 4.1. An element b is called (rationally) finite if for every rational chain xn with
b � �

n xn, there is n such that already b � xn.

4.1 Algebraicity
The types of our language are “rationally algebraic” in the following sense:

Theorem 4.2. Every element of any type is the least upper bound of a rational chain of
finite elements.

In classical domain theory, the above theorem (without the restriction to rational chains)
is the definition of algebraic domain, and one sometimes chooses to use algebraic domains
(of a special kind) to interpret the types of the language. Yet again, a definition of domain
theory becomes a theorem in our operational setting. But it is possible to proceed in a
similar way in the classical setting, as done e.g. by Streicher [39].

Remark 4.3. At this point, for the first time, the proofs will be essentially the same as the
classical ones, until we reach Remark 4.13. This is good: after the foundations of opera-
tional domain theory are established, there is no essential distinction between classical and
operational domain theory, regarding both the formulations of theorems and their proofs,
and the notation and terminology. So, in principle, for several propositions, we could just
tell the readers that their proofs are essentially the same as in classical domain theory and
omit them referring them to the literature. However, there are two problems with this ap-
proach: firstly, many readers will not be acquainted with classical domain theory, and may
indeed wish to use this as a bridge to approach it, and, secondly and perhaps more impor-
tantly, there is no single publication in which this set of useful properties is collected and
proved without daunting mathematical detours.

Theorem 4.2 will be proved later in this section. For the moment, we develop some
consequences.
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Corollary 4.4. An element b is finite if and only if for every rational chain xn with b =�
n xn, there is n such that already b = xn.

Proof. (⇒): If b =
�

n xn then b � �
n xn and hence b � xn for some n. But, by

definition of upper bound, we also have b � xn. Hence b = xn, as required.
(⇐): By Theorem 4.2, there is a rational chain xn of finite elements with b =

�
n xn.

By the hypothesis, b = xn for some n, which shows that b is finite.

The following provides a proof method for contextual equivalence based on finite ele-
ments:

Proposition 4.5. f = g holds in (σ → τ) iff f(b) = g(b) for every finite b ∈ σ.

Proof. (⇒): Contextual equivalence is an applicative congruence. (⇐): By extensionality
it suffices to show that f(x) = g(x) for any x ∈ σ. By Theorem 4.2, there is a rational chain
bn of finite elements with x =

�
n bn. Hence, by two applications of rational continuity and

one of the hypothesis, f(x) = f(
�

n bn) =
�

n f(bn) =
�

n g(bn) = g(
�

n bn) = g(x),
as required.

Of course, the above holds with contextual equivalence replaced by contextual order.
Another consequence of Theorem 4.2 is a third continuity principle, which is reminiscent
of the �–δ formulation of continuity in real analysis (cf. Section 4.4), and says that finite
parts of the output of a program depend only on finite parts of the input, as one would
expect:

Proposition 4.6. For any f ∈ (σ → τ), any x ∈ σ and any finite c � f(x), there is a finite
b � x such that already c � f(b).

Proof. By Theorem 4.2, x is the least upper bound of a rational chain bn of finite elements.
By rational continuity, c � �

n f(bn), and, by finiteness of c, there is n with c � f(bn).

Corollary 4.7. If U is open and x ∈ U , then there is a finite b � x such that already b ∈ U .

Proof. The hypothesis gives� � χU (x), and so there is some finite b � x with� � χU (b)
because � is finite. To conclude, use maximality of �.

In order to prove Theorem 4.2, we import the following concepts from classical domain
theory (see e.g. [5]):

Definition 4.8.

1. A deflation on a type σ is an element of type (σ → σ) that

(a) is below the identity of σ, and

(b) has finite image modulo contextual equivalence, that is, its image has finitely
many equivalence classes.

2. A (rational) SFP structure on a type σ is a rational chain idn of idempotent deflations
with

�
n idn = id, the identity of σ.

3. A type is (rationally) SFP if it has at least one SFP structure.

The idea of SFP structure is implicit in the work of Milner [24] and was made explicit
by Plotkin. The work of Milner intersects classical and operational domain theory, and can
be seen as a precursor of the latter. Our constructions and proofs given below are essentially
work by Milner and Plotkin, in its operational and denotational manifestations distilled in,
for example, [23, 39].

Lemma 4.9. For any SFP structure idn on a type σ, an element b ∈ σ is finite if and only
if b = idn(b) for some n.

12



Proof. (⇒): The inequality b � idn(b) holds because idn is a deflation. For the other
inequality, we first calculate b = (

�
n idn)(b) =

�
n idn(b) using Corollary 3.4. Then by

finiteness of b, there is n with b � idn(b).
(⇐): To show that b is finite, let xi be a rational chain with b � �

i xi. Then b =
idn(b) � idn(

�
i xi) =

�
i idn(xi) by rational continuity of idn. Because idn has finite

image, modulo contextual equivalence, the set {idn(xi) | i ∈ N} is finite and hence has a
maximal element, which is its least upper bound. That is, there is i ∈ N with b � idn(xi).
But idn(xi) � xi and hence b � xi, by transitivity, as required.

In particular, because idn is idempotent, idn(x) is finite and hence any x ∈ σ is the
least upper bound of the rational chain idn(x) and therefore Theorem 4.2 follows from this
and the following lemma, which gives further information.

Definition 4.10. By a finitary type we mean a type that is obtained from S and Bool by
finitely many applications of the product- and function-type constructions.

Lemma 4.11. Each type of the language is SFP.

Moreover, SFP structures idσ
n ∈ (σ → σ) can be chosen for each type σ in such a way

that

1. idσ
n is the identity for every finitary type σ,

2. idσ→τ
n (f)(x) = idτ

n(f(idσ
n(x))),

3. idσ×τ
n (x, y) = (idσ

n(x), idτ
n(y)).

Proof. We construct, by induction on σ, programs

dσ : ω → (σ → σ).

For the base case, we define

dBool(x)(p) = p,

dS(x)(p) = p,

dNat(x)(k) = if x > 0 then if k == 0 then 0 else 1 + dNat(x− 1)(k − 1),
dω(x)(y) = if x > 0 ∧ y > 0 then 1 + dω(x− 1)(y − 1).

Notice that “x > 0” and “x > 0 ∧ y > 0” are terms of Sierpinski type and hence the “if”
symbols that precede them don’t have corresponding “else” clauses. For the induction step,
we define

dσ→τ (x)(f)(y) = dτ (x)(f(dσ(x)(y))),
dσ×τ (x)(y, z) = (dσ(x)(y), dτ (x)(z)).

Condition (1) is easily established by induction on finitary types, and conditions (2) and (3)
hold by construction.

To conclude the proof, we show that the chain idσ
n

def= dσ(n) is an SFP structure on σ for
every type σ, by induction on σ. For the base case, only σ = ω is non-trivial. By induction
on n, we have that dω(n)(y) = min(n, y) for every n ∈ N. Hence dω(n) is idempotent
and below the identity, and has image {0, 1, . . . , n}. Now dω(∞)(k) =

�
n dω(n)(k) =�

n min(n, k) = k for k ∈ N. Hence dω(∞)(∞) =
�

k dω(∞)(k) =
�

k k = ∞. By
extensionality, dω(∞) is the identity. The induction step is straightforward.

Corollary 4.12.

1. Every element of a finitary type is finite.
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2. If f ∈ (σ → τ) is finite and x ∈ σ is arbitrary, then f(x) ∈ τ is finite.

3. If x ∈ σ and y ∈ τ are finite then so is (x, y) ∈ (σ × τ).

Proof. (1) This follows directly from Lemma 4.11(1).
(2): Pick n with f = idn(f). By Lemma 4.11(2) and monotonicity, we have that

f(x) = idn(f)(x) = idn(f(idn(x))) � idn(f(x)), which shows that f(x) is finite as
f(x) � idn(f(x)) by definition of deflation.

(3): Similar, using Lemma 4.11(3) instead.

Remark 4.13. From now on, until the applications Section 7, all proofs of classical domain-
theoretic and topological facts require new technical insights in our operational setting, with
two exceptions clearly indicated. Cf. Remark 4.3.

4.2 Topological characterization of finiteness
In classical domain theory, it follows directly from the definitions of finiteness and of Scott
topology that an element b is finite iff its upper set ↑ b = {x | b � x} is Scott open, as
spelled out below. The corresponding fact also holds in our operational setting, but is less
trivial. Moreover, there is a twist: to show that if b is finite then ↑ b is open amounts to
showing that there is a program for the characteristic function of ↑ b; we show that such
a program exists, but that it cannot be explicitly exhibited in general. We first need some
preliminary material.

Definition 4.14. We say that an open set in σ has finite characteristic if its characteristic
function is a finite element of the function type (σ → S).

Lemma 4.15. For any open set U in σ and any fixed n ∈ N, let

U (n) = id−1
n (U) = {x ∈ σ | idn(x) ∈ U}.

1. The open set U (n) ⊆ U has finite characteristic.

2. The set {U (n) | U is open in σ} has finite cardinality.

3. U has finite characteristic iff U = U (n) for some n.

4. The chain U (k) is rational and U =
�

k U (k).

Proof. (1) and (3): idn(χU )(x) = idn(χU (idn(x))) = χU (idn(x)), and hence idn(χU )
is the characteristic function of U (n).

(2): Any two equivalent characteristic functions classify the same open set and idσ→S
n

has finite image modulo contextual equivalence.
(4): idk(χU ) is a rational chain with least upper bound χU , i.e. χU (x) = � iff

idk(χU )(x) = � for some k.

Theorem 4.16. An element b ∈ σ is finite if and only if the set ↑ b is open.

As mentioned above, from the point of view of classical domain theory, this is a tautol-
ogy: b is finite, by definition, if every directed set with supremum above b already has an
element above b, which, again by definition, means that the set ↑ b is Scott open. But the
situation here is entirely different. Although one direction of the proof of the above the-
orem amounts to this observation, the other has to be non-trivial: we know that openness
implies rational Scott openness, but there is no reason to suspect that the converse holds in
general — this is corroborated by Proposition 4.20 below.

14



Proof. (⇒): By Lemma 3.9, for any x ∈ σ, we have that

↑x =
�
{U | U is open and x ∈ U}.

Because b is finite, there is n such that idn(b) = b. Hence if b belongs to an open set U
then b ∈ U (n) ⊆ U by Lemma 4.15(1). This shows that

↑ b =
�
{U (n) | U is open and b ∈ U}.

But this is the intersection of a set of finite cardinality by Lemma 4.15(2) and hence open
by Proposition 3.6.

(⇐): If b � �
n xn holds for a rational chain xn, then

�
n xn ∈ ↑ b and hence xn ∈ ↑ b

for some xn by Proposition 3.11(2), i.e. b � xn.

Hence the open sets ↑ b with b finite form a base of the (rational) topology:

Corollary 4.17. Every open set is a union of open sets of the form ↑ b with b finite.

Proof. If x belongs to an open set U then x ∈ ↑ b ⊆ U for some finite b by Corollary 4.7
and Proposition 3.11(1).

Remark 4.18.

1. Notice that the proof of Theorem 4.16(⇒) is not constructive. The reason is that we
implicitly use the fact that a subset of a finite set is finite. In general, however, it is
not possible to finitely enumerate the members of a subset of a finite set unless the
defining property of the subset is decidable, and here it is only semi-decidable. So,
although the theorem shows that the required program χ↑ b exists, it doesn’t explicitly
exhibit it.

2. Moreover, this non-constructivity in the theorem is unavoidable. In fact, if we had
a constructive procedure for finding χ↑ b for every finite b, then we would be able to
semi-decide contextual equivalence for finite elements, because b = c iff χ↑ b(c) =
� = χ↑ c(b). As all elements of finitary PCF are finite, and contextual equivalence is
co-semi-decidable for finitary PCF, this would give a decision procedure for equiva-
lence, contradicting [21].

Proposition 4.19. If an open set U has finite characteristic then

U = ↑F
def=

�
{↑ b | b ∈ F}

for some set F of finite cardinality consisting of finite elements.

Proof. By Lemma 4.15, if U has finite characteristic then there is n with U = id−1
n (U).

By construction of idn, the set F = idn(U) has finite cardinality and consists of finite
elements. Now, if x ∈ U , then x ∈ ↑F because x is above idn(x). Conversely, if x ∈ ↑F ,
then idn(u) � x for some u ∈ U ; but idn(u) ∈ U because U = id−1

n (U), and hence
x ∈ U because open sets are upper.

The converse fails in a sequential setting:

Proposition 4.20. The following are equivalent.

1. For every set F of finite cardinality consisting of finite elements of the same type, the
set ↑F is open.

2. Parallel convergence is definable in the language.

Proof. (⇑): Use Proposition 3.7(⇑).
(⇓): In the proof of Proposition 3.7(⇓), notice that U = ↑(�,⊥) and V = ↑(⊥,�) and

observe that for F = {(�,⊥), (⊥,�)} we have ↑F = U ∪ V .
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4.3 Density of the set of total elements
The results of this section are not used anywhere else in the paper, but the notion of totality,
defined here, is crucial both for much of the technical development of the paper and the
applications given in Section 7. We develop an operational version of the Kleene–Kreisel
density theorem [11]. This is the first and only time in which we use syntactical arguments
(but still without referring directly to the evaluation relation).

Definition 4.21. (Hereditary) totality is defined by induction on types as follows:

1. An element of ground type is total iff it is maximal in the contextual order.

2. An element f ∈ (σ → τ) is total iff f(x) ∈ τ is total whenever x ∈ σ is total.

3. An element of type (σ × τ) is total iff its projections onto σ and τ are total, or,
equivalently, it is contextually equivalent to an element (x, y) with x ∈ σ and y ∈ τ
total.

It is easy to see that any type has a total element. In order to cope with the fact that the only
total element of ω, namely ∞, is defined by fixed-point recursion, we need:

Lemma 4.22. If x is an element of any type constructed from total elements y1, . . . , yn

in such a way that the only occurrences of the fixed-point combinator in x are those of
y1, . . . , yn, if any, then x is total.

Proof. Define a term with free variables to be total if every instantiation of its free variables
by total elements produces a total element, and then proceed by induction on the formation
of the term x from the terms y1, . . . , yn.

Theorem 4.23. Every finite element is below some total element. Hence any inhabited
open set has a total element.

Proof. For each type τ and each n ∈ N, define programs

F τ : ω → ((τ → τ) → τ), Gτ
n : (τ → τ) → τ

by
F (x)(f) = if x > 0 then f(F (x− 1)(f)), Gn(f) = fn(t)

for some chosen t ∈ τ total. Then F (∞) = fix, F (n) � Gn and Gn is total. Now, given a
finite element b of any type, choose a fresh syntactic variable x of type ω, and define a term
b̃ from b by replacing all occurrences of fixτ by the term F τ (x). Then b = (λx.b̃)(∞).
Because b is finite, there is some n ∈ N such that already b = (λx.b̃)(n). To conclude,
construct a term b̂ from b by replacing all occurrences of fixτ by Gτ

n. Then b̂ is total by
Lemma 4.22, and (λx.b̃)(n) � b̂ and hence b � b̂ by transitivity.

4.4 �–δ formulation of continuity
We now formulate continuity in the � − δ style of real analysis. Here, not only the proofs
but also the formulations of the notions and theorems are new. However, all of them can
be directly exported to classical domain theory with the same proofs (and could have been
discovered directly within classical domain theory).

The following says that in order to know f(x) with a given finite precision �, it is
enough to know x with some sufficiently sharp finite precision δ.

Lemma 4.24. For any f ∈ (σ → τ), any x ∈ σ and any � ∈ N, there exists δ ∈ N such
that id�(f(x)) = id�(f(idδ(x)).

Proof. Since id�(f(x)) =
�

δ id� ◦f ◦ idδ(x), it follows from the finiteness of id�(f(x))
that there exists δ ∈ N such that id�(f(x)) = id�(f(idδ(x))).
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Although this is reminiscent of the �–δ notion of continuity in analysis, and rather
useful in practice, it is not quite the same, as the definition in analysis involves the notion
of closeness of two points, articulated by a notion of distance. Given a distance function d
with non-negative real values, and points x and y, one says that x and y are �-close, where �
is a positive real number, if d(x, y) < �. Then continuity of a function f at a point x means
that for every precision � > 0 with which we wish to know f(x), there is a sufficiently
sharp precision δ > 0 such that for every y that is δ-close to x, we have that f(y) is �-
close to f(x). Hence f(y) is a sufficiently precise approximation of f(x), so that it is not
necessary to know x exactly in order to get an �-precise approximation of f(x).

Our next goal is to develop an analogue of this situation. We replace the closeness
relation d(x, y) < �, where x and y are points and � > 0 is a real number, by the relation
x =� y, where x and y are elements of a type of our language and � is a natural number
rather than a real number:

x =� y ⇐⇒ id�(x) = id�(y).

But notice an important difference: in analysis, the smaller the real number � > 0 is, the
closer x and y are when d(x, y) < �. Here, on the other hand, the bigger the natural
number � is, the closer the two elements are when x =� y. If one thinks of id�(x) as the
truncation of the possibly infinite object x to finite precision �, then x =� y means that a
precision higher than � is needed to distinguish x and y.

We don’t know whether our functions are continuous in the �-δ sense for all types, but
we show that this is the case for special types of interest. We refer to the function type
(Nat→ Nat) as the Baire type and denote it by Baire:

Baire = (Nat→ Nat).

We think of this as the type of possibly partial sequences of natural numbers. Then the set
of total elements of Baire is an operational manifestation of the Baire space of classical
topology. The following technical lemma is easily proved:

Lemma 4.25. Define id� : Baire→ Baire by

id�(s) = λi. if i < � then s(i) else ⊥.

Then id�(s) is finite and above id�(s), and if s, t ∈ Baire are total then for all � ∈ N,

id�(s) � t =⇒ s =� t.

Theorem 4.26. For any total f ∈ (σ → Baire) and any total x ∈ σ,

∀� ∈ N ∃δ ∈ N ∀ total y ∈ σ, x =δ y ⇒ f(x) =� f(y).

Proof. Because id�(f(x)) is finite and below f(x), there is δ such that already id�(f(x)) �
f(idδ(x)) by Proposition 4.6. If x =δ y then f(idδ(x)) = f(idδ(y)) and hence id�(f(x)) �
f(idδ(y)) � f(y). By Lemma 4.25, f(x) =� f(y), as required.

Similarly, we have:

Theorem 4.27. For any total f ∈ (σ → γ) and any total x ∈ σ, where γ ∈ {Nat, Bool},

∃δ ∈ N ∀ total y ∈ σ, x =δ y =⇒ f(x) = f(y).

As mentioned above, we don’t know whether the above continuity theorems can be
generalized to other types. One of the authors would be rather surprised if they could be
generalized to all types (with or without parallel features, either in our operational setting
or in the classical domain-theoretic setting), but the other has a strong intuition that the
generalization to all types ought to hold.
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5 Compact sets
Our definition of compact is taken from [12], as are Propositions 5.5 and 5.6. However,
the proof of Proposition 5.6 given in [12] relies on computability theory, whereas our proof
relies on continuity, which makes it applicable to the extension of the language with oracles.
All other results reported in this section are new.

The intuition behind the classical topological notion of compactness is that a compact
set behaves, in many important respects, as if it were a set of finite cardinality — see
e.g. [16]. The official definition, which is more obscure, says that a subset Q of a topolog-
ical space is compact iff it satisfies the Heine–Borel property: any collection of open sets
that covers Q has a finite subcollection that already covers Q.

5.1 Operational formulation of the notion of compactness
In order to arrive at an operational notion of compactness, we reformulate the above defi-
nition in two stages.

1. Any collection of open sets of a topological space can be made directed by adding
the unions of finite subcollections. Hence a set Q is compact iff every directed cover
of Q by open sets includes an open set that already covers Q.

2. Considering the Scott topology on the lattice of open sets of the topological space,
this amounts to saying that the collection of open sets U with Q ⊆ U is Scott open
in this lattice.

Thus, this last reformulation considers open sets of open sets. We take this as our definition,
with “Scott open” replaced by “open” in the sense of Definition 3.5:

Definition 5.1. We say that a collection U of open sets of a type σ is open if the collection

{χU | U ∈ U}

is open in the function type (σ → S).

Lemma 5.2. For any set Q of elements of a type σ, the following two conditions are
equivalent:

1. The collection {U open | Q ⊆ U} is open.

2. There is (∀Q) ∈ ((σ → S) → S) such that

∀Q(p) = � ⇐⇒ p(x) = � for all x ∈ Q.

Proof. ∀Q = χU for U = {χU | Q ⊆ U}, because if p = χU then Q ⊆ U ⇐⇒ p(x) = �
for all x ∈ Q.

Definition 5.3. We say that a set Q of elements of a type σ is compact if it satisfies the
above equivalent conditions. In this case, for the sake of clarity, we write “∀x ∈ Q. . . . ”
instead of “∀Q(λx. . . . )”.

Lemma 5.2(2) gives a sense in which a compact set behaves as a set of finite cardinality:
it is possible to universally quantify over it in a mechanical fashion. Hence every finite set
is compact. Examples of infinite compact sets will be given shortly.
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5.2 Basic classical properties
By Lemma 5.2(1), compact sets satisfy the “rational Heine–Borel property”, because open
sets are rationally Scott open:

Proposition 5.4. If Q is compact and Un is a rational chain of open sets with Q ⊆ �
n Un,

then there is n ∈ N such that already Q ⊆ Un.

Further properties of compact sets that are familiar from classical topology hold for our
operational notion [12]:

Proposition 5.5.

1. For any f ∈ (σ → τ) and any compact set Q in σ, the set

f(Q) = {f(x) | x ∈ Q}

is compact in τ .

2. If Q is compact in σ and R is compact in τ , then Q×R is compact in σ × τ .

3. If Q is compact in σ and V is open in τ , then

N(Q,V ) def= {f ∈ (σ → τ) | f(Q) ⊆ V }

is open in (σ → τ).

Proof. (1): ∀y ∈ f(Q).p(y) = ∀x ∈ Q.p(f(x)).
(2): ∀z ∈ Q×R.p(z) = ∀x ∈ Q.∀y ∈ R.p(x, y).
(3): χN(Q,V )(f) = ∀x ∈ Q.χV (f(x)) .

5.3 First examples and counter-examples
The set of all elements of any type σ is compact, but for trivial reasons: p(x) = � holds for
all x ∈ σ iff it holds for x = ⊥, by monotonicity, and hence the definition ∀σ(p) = p(⊥)
gives a universal quantification program.

Proposition 5.6. The total elements of Nat and Baire don’t form compact sets.

Proof. It is easy to construct g ∈ (ω × Nat → S) such that g(x, n) = � iff x > n for all
x ∈ ω and n ∈ N. If the total elements N of Nat did form a compact set, then we would
have u ∈ (ω → S) defined by u(x) = ∀n ∈ N.g(x, n) that would satisfy u(k) = ⊥ for
all k ∈ N and u(∞) = � and hence would violate rational continuity. Therefore N is not
compact in Nat. If the total elements of Baire formed a compact set, then, considering
f ∈ (Baire → Nat) defined by f(s) = s(0), Proposition 5.5(1) would entail that N is
compact in Nat, again producing a contradiction.

The above proof relies on a continuity principle rather than on recursion theory. Thus,
compactness of N in Nat fails even if the language includes an oracle for the Halting Prob-
lem. The second part of the following says that the types of our language are “rationally
spectral” spaces:

Theorem 5.7. An open set is compact iff it has finite characteristic. Hence every open set
is a rational union of compact open sets.

Proof. By Proposition 5.2(1), an open set V is compact iff {U open | V ⊆ U} is open, if
and only if {χU | U open and V ⊆ U} is open, if and only if the set ↑χV is open. It then
follows from Theorem 4.16 that this is equivalent to χV being finite, i.e. V having finite
characteristic. The last part of the proposition then follows from Lemma 4.15
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The simplest non-trivial example of a compact set, which is a manifestation of the “one-
point compactification of the discrete space of natural numbers”, is given in the following
proposition.

We regard function types of the form (Nat→ σ) as sequence types and define “head”,
“tail” and “cons” constructs for sequences as follows:

hd(s) = s(0),
tl(s) = λi.s(i + 1),
n :: s = λi. if i == 0 then n else s(i− 1).

We also use familiar notations such as

0n1ω

as shorthands for evident terms such as

λi. if i < n then 0 else 1.

Theorem 5.8. The set N∞ of sequences of the forms 0n1ω and 0ω is compact in the type
Baire.

Proof. Define, omitting the subscript N∞ for ∀,

∀(p) = p(if p(1ω) ∧ ∀s.p(0 :: s) then t),

where t is some element of N∞. More formally, ∀ = fix(F ) where

F (A)(p) = p(if p(1ω) ∧A(λs.p(0 :: s)) then t).

We must show that, for any given p, ∀(p) = � iff p(s) = � for all s ∈ N∞.
(⇐): The hypothesis gives p(0ω) = �. By Proposition 4.6, there is n such that already

p(idn(0ω)) = �. But idn(0ω)(i) = 0 if i < n and idn(0ω)(i) = ⊥ otherwise. Using this
and monotonicity, a routine proof by induction on k shows that if p(idk(0ω)) = � then
F k(⊥)(p) = �. The result hence follows from the fact that F k(⊥) � ∀.

(⇒): By rational continuity, the hypothesis implies that Fn(⊥)(p) = � for some n. A
routine, but slightly laborious, proof by induction on k shows that, for all q, if F k(⊥)(q) =
� then q(s) = � for all s ∈ N∞.

In order to construct more sophisticated examples of compact sets, we need the tech-
niques of Section 6 below.

5.4 Uniform continuity
We now show that certain programs are uniformly continuous on certain sets (cf. Theo-
rems 4.26 and 4.27). Recall from Section 4.4 that we defined, for elements x and y of the
same type, and any natural number �,

x =� y ⇐⇒ id�(x) = id�(y).

For technical purposes, we now also define

x ≡� y ⇐⇒ id�(x) = id�(y).

where id� : Baire→ Baire is defined as in Lemma 4.25:

id�(s) = λi. if i < � then s(i) else ⊥.

20



Lemma 5.9. For f ∈ (σ → Baire) total and Q a compact set of total elements of σ,

∀� ∈ N ∃δ ∈ N ∀x ∈ Q, f(x) ≡� f(idδ(x)).

Proof. For any given � ∈ N, it is easy to construct a program

e ∈ (Baire× Baire→ S)

such that

(i) if s, t ∈ Baire are total then s ≡� t ⇒ e(s, t) = �,

(ii) for all s, t ∈ Baire, e(s, t) = � ⇒ s ≡� t.

If we define p(x) = e(f(x), f(x)), then, by the hypothesis and (i), ∀Q(p) = �. By
Proposition 4.6, ∀Q(idδ(p)) = � for some δ ∈ N, and, by Lemma 4.11(2), we have that
idδ(p)(x) = p(idδ(x)). It follows that e(f(idδ(x)), f(idδ(x))) = � for all x ∈ Q. By
monotonicity, e(f(x), f(idδ(x))) = �, and, by (ii), f(x) ≡� f(idδ(x)), as required.

Theorem 5.10. For f ∈ (σ → Baire) total and Q a compact set of total elements of σ,

∀� ∈ N ∃δ ∈ N ∀x, y ∈ Q, x =δ y ⇒ f(x) =� f(y).

Proof. Given � ∈ N, first construct δ ∈ N as in Lemma 5.9. For x, y ∈ Q, if x =δ y then
id�(f(x)) = id�(f(idδ(x))) = id�(f(idδ(y))) � f(y). By Lemma 4.25, f(x) =� f(y), as
required.

Similarly, we have:

Theorem 5.11. For γ ∈ {Nat, Bool}, f ∈ (σ → γ) total and Q a compact set of total
elements of σ,

1. ∃δ ∈ N ∀x ∈ Q, f(x) = f(idδ(x)),

2. ∃δ ∈ N ∀x, y ∈ Q, x =δ y =⇒ f(x) = f(y).

The following is used in Section 7 below:

Definition 5.12. For f and Q as in Theorem 5.11, we refer to the least δ ∈ N such that
(1) (respectively (2)) holds as the big (respectively small) modulus of uniform continuity of
f at Q. (In the literature, e.g.[35], these are sometimes referred to as the intensional and
extensional moduli of continuity respectively.)

Clearly, the small modulus of continuity is always smaller than the big one. Although
they can be equal, they are different in general.

Examples 5.13. Let f, g : (Nat → Bool) → Bool be defined by f(α) = true and by
g(α) = if α17 == 0 then true else true. Then the small and big moduli of f at N∞ are
both 0, but they are respectively 0 and 18 for g.

Intuitively, the big modulus tells us how much of the input the function queries to
produce the output, whereas the small one tells us how much of the argument the value of
the function actually depends on.
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5.5 Compact saturated sets
The remainder of the paper doesn’t depend on the material of this subsection. In classical
domain theory and topology, among all compact sets, the saturated ones play a distin-
guished role. Here we analyse the extent to which classical results about compact saturated
sets generalize to our operational setting. The main result is that, as is the case for alge-
braic (and more generally, continuous) domains in classical domain theory, every compact
saturated set of elements of any type is an intersection of upper sets of finite sets of fi-
nite elements. The existing classical proofs don’t apply to our setting, and genuinely new
technical ideas are needed to establish this, but, again, the proofs offered here apply to the
classical setting.

Definition 5.14. The saturation of a subset S of a type σ is defined to be the intersection
of its open neighbourhoods and is denoted by sat(S), i.e.,

sat(S) =
�
{U open |S ⊆ U}.

A set S is said to be saturated if S = sat(S).

In classical domain theory, a set is saturated in this sense if and only if it is an upper
set. As we shall see shortly, in our sequential operational setting, every saturated set is an
upper set, but the converse fails in general.

Proposition 5.15. Let S be a subset of a type.

1. S ⊆ U for U open if and only if sat(S) ⊆ U .

2. ↑S ⊆ sat(S).

3. sat(S) is saturated.

4. sat(S) is the largest set with the same neighbourhoods as S.

Proof. Clearly S ⊆ sat(S). Hence sat(S) ⊆ U implies S ⊆ U . Conversely, if S ⊆ U ,
then by definition, sat(S) ⊆ U . So (1) holds. If t ∈ ↑S, then s � t for some s ∈ S.
Hence t belongs to every neighbourhood of S, and so to sat(S). Therefore ↑S ⊆ sat(S),
i.e. (2) holds. By (2), S ⊆ sat(S) for all S. Thus sat(S) ⊆ sat(sat(S)). Suppose
x ∈ sat(sat(S)). Then for each open U with S ⊆ U , it holds that sat(S) ⊆ U . Thus
x ∈ sat(S) by definition. Hence sat(S) = sat(sat(S)), i.e., (3) holds. That (4) holds is
clear.

The following is a generalization of Theorem 4.16.

Theorem 5.16. If F is a finite set of finite elements, then sat(F ) is an open set of finite
characteristic.

Proof. For each x ∈ F , there is an integer n with idn(x) = x. Let m be the maximum
of such integers. Then idm(x) = x for all x ∈ F . Hence if F ⊆ U for some open
U , then F ⊆ id−1

m (U) ⊆ U . So sat(F ) =
�{id−1

m (U) | F ⊆ U}. Because this is the
intersection of a finite set of open sets, it is open. By the idempotence of idm, it follows that
(sat(F ))(m) = (

�{U (m) | F ⊆ U , U open})(m) =
�{(U (m))(m) | F ⊆ U , U open} =�{U (m) | F ⊆ U , U open} = sat(F ).

As discussed above, in classical domain theory and topology, a set is saturated if and
only if it is an upper set. But, in our setting, this entails the existence of parallel features:

Proposition 5.17. If every upper set is saturated, then parallel convergence is definable in
the language.
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Proof. This follows directly from Theorem 5.16 and Proposition 4.20.

We don’t know whether the converse holds. In our context, a main reason for consider-
ing compact saturated sets is that definable quantifiers don’t distinguish between a set and
its saturation:

Proposition 5.18.

(1) Q is compact iff sat(Q) is compact, and in this case, ∀Q = ∀sat(Q).

(2) For any compact sets Q and R of the same type, it holds that ∀Q � ∀R iff R ⊆
sat(Q).

Proof. (1) This follows of Lemma 5.15(1). (2) ∀Q � ∀R iff ∀U ∈ U .∀Q(χU ) = � ⇒
∀R(χU ) = � iff ∀U ∈ U .Q ⊆ U ⇒ R ⊆ U iff R ⊆ �{U ∈ U | Q ⊆ U} iff
R ⊆ sat(Q).

Lemma 5.19. If Q is compact, then idn(Q) is compact and

idn(∀Q) = ∀idn(Q).

Furthermore, if U is open with Q ⊆ U , then there is n such that idn(Q) ⊆ U .

Proof. Compactness of idn(Q) follows directly from Proposition 5.5(1). For each p ∈
(σ → S), we have that idn(∀Q)(p) = ∀Q(p ◦ idn). But ∀Q(p ◦ idn) = � iff for all
x ∈ Q, p ◦ idn(x) = �, and so idn(∀Q) = ∀idn(Q). Now if U is open with Q ⊆ U , then
∀Q(χU ) = �. Hence by rational continuity there is n such that already idn(∀Q)(χU ) = �,
i.e., ∀idn(Q)(χU ) = �, and so there is n such that idn(Q) ⊆ U .

Theorem 5.20. If Q is compact then sat(Q) =
�

n sat(idn(Q)).

Hence every compact saturated set is an intersection of upper sets of finite sets of finite
elements.

Proof. Since for any n it holds that idn(Q) ⊆ U implies Q ⊆ U , it follows that Q ⊆
sat(idn(Q)). Thus sat(Q) ⊆ �

n sat(idn(Q)). For the reverse inclusion, take any U open
with Q ⊆ U . Then there is n such that idn(Q) ⊆ U and hence sat(idn(Q)) ⊆ U . Hence
sat(Q) =

�
n sat(idn(Q)). By Proposition 5.16, the set sat(idn(Q) is an open set of finite

characteristic, and hence, by Proposition 4.19, it is the upper set of a finite set of finite
elements.

A family of compact sets Qi is said to be rationally filtered if the chain of quantifiers
∀Qi

is rational in (σ → S) → S. In classical domain theory, algebraic domains have the
property that filtered intersections of compact saturated sets are compact. This is open in
our setting, even in the rational case. We now briefly summarize what we know about this.

Proposition 5.21. The following are equivalent for any rationally filtered family Qi of
compact saturated subsets of a type σ:

1.
�

i Qi is compact and ∀T
i Qi

� �
i ∀Qi

.

2.
�

i ∀Qi
universally quantifies over

�
i Qi.

3.
�

i Qi ⊆ U =⇒ ∃i.Qi ⊆ U whenever U is open.
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Proof. First observe that the reverse inequality in (1) holds by Proposition 5.18, and the
reverse implication in (3) clearly holds.

(1 ⇐⇒ 2): Immediate from this observation.
(1 =⇒ 3): The inequality (1) is equivalent to the implication

∀T
i Qi

(χU ) = � =⇒
�

i

∀Qi(χU ) = �,

which is clearly equivalent to
�

i Qi ⊆ U =⇒ ∃i.Qi ⊆ U, which, in turn, is equivalent
to (3).

(3 =⇒ 2): We have to show that
�

i ∀Qi
(χU ) = � ⇐⇒ �

i Qi ⊆ U. But the
lhs is equivalent to ∃i.Qi ⊆ U , and hence the equivalence amounts to (3) by the above
observation.

Now notice that for any element x, the upper set ↑x is compact with ∀↑ x(p) = p(x),
by monotonicity of p. Even when the compact saturated sets Qi in the above proposition
are upper sets of points, say ↑xi, we don’t know whether their intersection is compact. The
following proposition shows that this is the case if xi is a rational chain. However, it is not
clear to us whether the rationality of the chain Qi = ↑xi of compact sets implies that of
the chain of elements xi.

Proposition 5.22. For every rational chain xi, the intersection of the rationally filtered
chain ↑xi of compact saturated sets is ↑�

i xi and hence, being the upper set of an element,
is compact. Moreover,

�
i ∀↑ xi

= ∀↑F
i xi

.

Proof. The first part is a well-known and easy lattice-theoretic argument:
�

i ↑xi = ↑�
i xi

because u ∈ �
i ↑xi ⇐⇒ ∀i.xi � u ⇐⇒ �

i xi � u ⇐⇒ u ∈ ↑�
i xi. Moreover,

for any p ∈ (σ → S), it holds that (
�

i ∀↑ xi)(p) = � iff p(xi) = � for some i iff
p(

�
i xi) = � iff p(u) = � for all u ∈ ↑�

i xi, which shows that
�

i ∀↑ xi
= ∀↑F

i xi
.

6 A data language
In order to obtain a more constrained and better behaved notion of totality for programs,
we embed our programming language into a data language. For base types, we keep the
notion of totality unchanged. But, at function types, rather than saying that a program
f ∈ σ → τ is total iff f(x) is total for every x ∈ σ in the programming language, we
say that the program is total iff f(x) is total for every x ∈ σ in the data language. This
definition is formulated more generally for functional data, although our primary interest
is in total programs. The data language provides a notion of higher-type element that is not
necessarily computable, analogous to the elements of denotational models, that functional
programs can be applied to.

6.1 Operational notions of data
In an operational setting, one usually adopts the same language to construct programs of a
type and to express data of the same type. But consider programs that can accept externally
produced streams of integers as inputs. Because such streams are not necessarily definable
in the language, it makes sense to consider program equivalence defined by quantification
over more liberal “data contexts” and ask whether the same notion of program equivalence
is obtained.

Definition 6.1. Let P be the programming language introduced in Section 2, perhaps ex-
tended with parallel features, but not with oracles, and let D be P extended with oracles.
We think of D as a data language for the programming language P .
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As discussed above, the idea is that the closed terms of P are programs and those of D
are (higher-type) data. Accordingly, in this context, the notation x ∈ σ means that x is a
closed term of type σ in the data language. Of course, this includes the possibility that x is
a program.

6.2 Program equivalence with respect to data contexts
We now show that the extension of the programming language with oracles doesn’t change
the notion of contextual equivalence for programs. Denote by �P ,=P ,�D,=D the con-
textual orders and equivalences of the languages P and D as defined in Section 2.6 (cf. Sec-
tion 2.4). Because P ⊆ D, the first part of the following can be interpreted as saying that,
for elements of P , equivalence with respect to ground P-contexts and equivalence with
respect to ground D-contexts coincide.

Theorem 6.2. For all elements x, y ∈ P of the same type,

x =P y ⇐⇒ x =D y.

More generally,
x �P y ⇐⇒ x �D y.

We rely on two lemmas (which don’t depend on each other):

Lemma 6.3. The theorem holds for ground types.

Hence, for ground types, we shall write “=” unambiguously to denote =P and =D.

Proof. This follows from the observation of Section 2.6 that x = v iff x evaluates to v,
and that, clearly, x evaluates to a ground value in P iff it evaluates to the same value in D
(this last step requires a trivial proof by induction of the definition of evaluation, taking into
account that, because x is a program, the rule for oracles is never invoked).

Lemma 6.4. In the language D, any finite element is D-equivalent to a program.

Proof. By Lemmas 4.9 and 4.11 applied to the language D (cf. Section 2.4), every finite
element of any type σ is of the form idn(x) for n and x ∈ σ arbitrary.

We first consider the case that σ = (Nat → Nat) and that x is an oracle Ω. We
construct programs fn by induction on n:

f0(k) = ⊥, fn+1(k) = if k == n then n� else fn(k),

where n� denotes the natural number Ω(n), calculated at the time of defining fn+1. Then
clearly fn(k) = idn(Ω)(k) for all k, and by extensionality and the fact that every non-
bottom element of Nat is equivalent to a natural number, fn =D idn(Ω).

Now, for arbitrary σ in D and x ∈ σ, it is clear that there exist a program g ∈
Bairem → σ and oracles Ω1, . . . ,Ωm such that x =D g(Ω1, . . . ,Ωm). It follows from m
applications of Lemma 4.24 that there exist k1, . . . , km such that

idn(x) =D idn(g(idk1(Ω1), . . . , idkm
(Ωm))).

But the right-hand term is D-equivalent to a program, because the subterms idn and g are
programs and the subterms idk1(Ω1), . . . , idkm

(Ωm) are equivalent to programs.

Proof of the theorem. Because there are more ground contexts in D than in P , one has that
x �D y =⇒ x �P y. To establish the converse and hence the theorem, we apply the
criterion of Section 2.7 using Lemma 6.3: we assume that p(x) = � for p ∈ (σ → S)
in D and show that p(y) = � too. By continuity, there is n such that idn(p)(x) = �.
By Lemma 6.4, there is a program fn =D idn(p). Then fn(x) = � because application
is a congruence. By the hypothesis that x �P y and monotonicity, fn(y) = �. Again
using the fact that application is a congruence, idn(p)(y) = �, and hence p(y) = � by
monotonicity, as required, and the proof of the theorem is concluded.
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Remark 6.5. In the light of Remark 3.12, it makes sense to refer to contextual equiva-
lence defined with respect to a data language as observational equivalence, and keep the
traditional usage of the terminology contextual equivalence for equivalence with respect to
program contexts. Then the above theorem says that observational and contextual equiv-
alence agree. This is compatible with the fact that both terminologies are already used to
refer to the same notion. The point of the theorem, using the language of Remark 3.12,
is that two programs can be distinguished by observable properties iff they can be distin-
guished by semi-decidable properties.

6.3 Program totality with respect to the data language
On the other hand, the notion of totality changes:

Theorem 6.6. There are programs that are total with respect to P but not with respect
to D.

This kind of phenomenon is folklore. There are programs of type e.g. Cantor→ Bool,
where

Cantor
def= (Nat→ Bool),

that, when seen from the point of view of the data language, map programmable total ele-
ments to total elements, but diverge at some non-programmable total inputs. The construc-
tion uses Kleene trees [8], and can be found in [12, Chapter 3.11]. This is analogous to the
fact that totality with respect to P also disagrees with totality with respect to denotational
models. A proof for the Scott model can be found in [32]. For the intriguing relationship
between totality in the Scott model with sequential computation, see [26].

6.4 Higher-type oracles
Berardi, Bezem and Coquand [9] work with a seemingly more expressive language. They
have the following term-formation rule: if ti : σ is any sequence of terms, then λi.ti : Nat→
σ is a term. When σ = Nat, this amounts to the construction of a first-order oracle, and
hence we refer to the new terms as higher-type oracles. However, it turns out that the
existence of such oracles follows automatically from the existence of first-order oracles:

Theorem 6.7. In the presence of first-order oracles, for any type σ and any sequence
xi ∈ σ there is s ∈ (Nat→ σ) such that s(i) = xi for every i.

Proof. Any x ∈ σ can be coded as a program g : Bairen → σ together with finitely
many oracles Ω1, . . . ,Ωn such that x = g(Ω1, . . . ,Ωn). Using a pairing function �·, ·�,
all the oracles can be packed into a single one, say Ω, and we can consider a program
h : Baire → σ that first unpacks the oracles and then behaves as g, so that x = h(Ω).
Now, for every type τ there is an “enumerator” Eτ : Nat → τ such that Eτ (�t�) =
t for any program t : τ with Gödel number �t�. See Plotkin and Longley [22] for a
purely operational proof that works with and without parallel features in the language.
Hence if we define evσ(n, f) = EBaire→σ(n)(f) then we get an “evaluator” evσ : Nat ×
Baire → σ such that evσ(�h�, Ω) = x for any element x coded as h(Ω) as above. To
conclude, from the codings hi,Ωi of the given elements xi, we form two first-order oracles
G(i) = �hi� and A�i, n� = Ωi(n), and then define s(i) = ev(G(i),λn.A�i, n�). By
construction, s(i) = xi, as required.

This theorem is applied in the proof of Lemma 7.10 below.
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7 Sample applications
We use the data language D to formulate specifications of programs in the programming
language P . As in Section 6, the notation x ∈ σ means that x is a closed term of type σ
in D. This is compatible with the notation of Sections 3–5 by taking D as the underlying
language for them. Again maintaining compatibility, we take the notions of totality, open
set and compact set with respect to D. To indicate that openness or compactness of a
set is witnessed by a program rather than just an element of the data language, we say
programmably open or compact.

7.1 Compactness of the Cantor space
As for the Baire type, we think of the elements of the Cantor type as sequences, and,
following topological tradition, in this context we identify the booleans true and false with
the numbers 0 and 1 (it doesn’t matter in which order). The following is our main tool in
this section:

Theorem 7.1. The total elements of the Cantor type form a programmably compact set.

Proof. This is proved and discussed in detail in [12, Chapter 3.11], and also follows from
the more general Theorem 7.7 below, and hence we only provide the construction of the
universal quantification program, with one minor improvement. We recursively define
∀ : (Cantor→ S) → S by

∀(p) = p(if ∀s.p(0 :: s) ∧ ∀s.p(1 :: s) then t),

where t is some programmable total element of Cantor, e.g. 0ω . The correctness proof
for this program is similar to that of Theorem 5.8, but involves an invocation of König’s
Lemma.

If the data language is taken to be P itself, Theorem 7.1 fails for the same reason that
leads to Theorem 6.6 [12, Chapter 3.11]. Of course, the program ∀ : (Cantor → S) → S
of the above proof can still be written down. But it no longer satisfies the required specifi-
cation given in Lemma 5.2(2). In summary, it is easier to universally quantify over all total
elements of the Cantor type than just over the programmable ones, to the extent that the
former can be achieved by a program but the latter cannot. Interestingly, the programma-
bility conclusion of Theorem 7.1 is not invoked for the purposes of this section, because
we only apply compactness to get uniform continuity.

7.2 The Gandy–Berger functional
The following theorem is due to Berger [10], with domain-theoretic denotational specifica-
tion and proof, and it was known to Gandy, according to M. Hyland. As discussed in the
introduction, the purpose of this section is to illustrate that such specifications and proofs
can be directly understood in our operational setting, and, moreover, apply to sequential
programming languages.

Theorem 7.2. There is a total program

ε : (Cantor→ Bool) → Cantor

such that for any total p ∈ (Cantor → Bool), if p(s) = true for some total s ∈ Cantor,
then ε(p) is such an s.

Proof. Define

ε(p) = if p(0 :: ε(λs.p(0 :: s))) then 0 :: ε(λs.p(0 :: s)) else 1 :: ε(λs.p(1 :: s)).
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The required property is established by induction on the big modulus of uniform continuity
of a total element p ∈ (Cantor → Bool) at the set of total elements, using the fact that if
p has modulus δ + 1 then λs.p(0 :: s) and λs.p(1 :: s) have modulus δ, and that when p
has modulus zero, p(⊥) is total and hence p is constant.

This gives rise to universal quantification for boolean-valued rather than Sierpinski-
valued predicates:

Corollary 7.3. There is a total program

∀ : (Cantor→ Bool) → Bool

such that for every total p ∈ (Cantor→ Bool),

∀(p) = true ⇐⇒ p(s) = true for all total s ∈ Cantor.

Proof. First define ∃ : (Cantor → Bool) → Bool by ∃(p) = p(ε(p)) and then define
∀(p) = ¬∃s.¬p(s).

Corollary 7.4. The function type (Cantor → Nat) has decidable equality for total ele-
ments.

Proof. Define a program

(==): (Cantor→ Nat)× (Cantor→ Nat) → Bool

by (f == g) = ∀ total s ∈ Cantor.f(s) == g(s).

7.3 Simpson’s functional
Simpson [35] applied Corollary 7.3 to develop surprising sequential programs for comput-
ing integration and supremum functionals ([0, 1] → R) → R, with real numbers repre-
sented as infinite sequences of digits. The theory developed here copes with that, again
allowing a direct operational translation of the original denotational development. In order
to avoid the necessary background on real number-computation, we illustrate the essential
idea by reformulating the development of the supremum functional, with the closed unit
interval and the real line replaced by the Cantor and Baire types, and with the natural order
of the reals replaced by the lexicographic order on sequences.

The lexicographic order on the total elements of the Baire type is defined by

s ≤ t iff whenever s �= t, there is n ∈ N with s(n) < t(n) and s(i) = t(i) for
all i < n.

Lemma 7.5. There is a total program

max: Baire× Baire→ Baire

such that

1. max(s, t) is the maximum of s and t in the lexicographic order for all total s, t ∈
Baire, and

2. (s, t) ≡� (s�, t�) ⇒ max(s, t) ≡� max(s�, t�) for all s, t, s�, t� ∈ Baire (total or not)
and all � ∈ N.

Proof. It is easy to verify that the program

max(s, t) = if hd(s) == hd(t)
then hd(s) :: max(tl(s), tl(t))
else if hd(s) > hd(t) then s else t

fulfills the requirements.
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Theorem 7.6. There is a total program

sup: (Cantor→ Baire) → Baire

such that for every total f ∈ (Cantor→ Baire),

sup(f) = sup{f(s) | s ∈ Cantor is total},

where the supremum is taken in the lexicographic order.

Proof. Let t ∈ Cantor be a programmable total element and define

sup(f) = let h = hd(f(t)) in
if ∀ total s ∈ Cantor.hd(f(s)) == h

then h :: sup(λs. tl(f(s)))
else max(sup(λs.f(0 :: s)), sup(λs.f(1 :: s))),

where “let x = . . . inM” stands for “(λx.M)(. . . )”.
One shows by induction on n ∈ N that, for every total f ∈ (Cantor→ Baire),

sup(f) ≡n sup{f(s) | s ∈ Cantor is total}.

The base case is trivial. For the induction step, one proceeds by a further induction on the
small modulus of uniform continuity of hd ◦f : Cantor → Nat at the total elements of
Cantor, crucially appealing to the non-expansiveness condition given by Lemma 7.5(2).
One uses the facts that if hd ◦f has modulus δ + 1 then hd ◦λs.f(0 :: s) and hd ◦λs.f(1 ::
s) have modulus δ, and that if hd ◦f has modulus 0 then hd(f(s)) = hd(f(t)) for all total
s and t.

Theorems 7.2 and 7.6 rely on the compactness of the total elements of the Cantor type.
Arguments similar to that of Proposition 5.6 show that these two theorems fail if the Cantor
type is replaced by the Baire space.

7.4 Countable-Tychonoff functional
The Tychonoff theorem in classical topology states that a product of arbitrarily many com-
pact spaces is compact. A proof that this holds in a computational setting for countably
many spaces is developed in [12, Theorem 13.1]. Given a sequence of universal quantifiers
∀Qi for a sequence of compact sets Qi, we wish to obtain the quantifier for the product of
the compact sets.

We face two difficulties. The first is that, because our language doesn’t include depen-
dent types, we cannot assume that each compact set Qi is contained in a different type σi.
Hence we make the simplifying assumption that all the compact sets are contained in the
same type σ. The second difficulty is that we are not able to produce a sequential algorithm
without additionally being given a sequence ui ∈ Qi of points. Hence we just assume that
such a sequence is also given. The logically minded reader may be tempted to conjecture
that the reason for this is that the Tychonoff theorem relies on the axiom of choice, and
that we are avoiding the axiom by explicitly supplying a choice as input. However, using
parallel convergence, an algorithm that doesn’t require the choice as input is possible —
see the paragraph preceding [12, Theorem 13.1]. We leave as an open problem to develop
a sequential algorithm that doesn’t require the choice as input.

Here is the sequential algorithm developed in [12]:

A : (Nat→ σ)× (Nat→ ((σ → S) → S)) → (((Nat→ σ) → S)) → S)
A(u, α)(p) = hd(α)(λx.p(if A(tl(u), tl(α))(λs.p(x :: s)) then u)).

The following was proved in [12, Section 13.1]:
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Theorem 7.7. If Qi ⊆ σ is a sequence of compact sets, ui ∈ Qi is a sequence of points
and α is a sequence such that αi = ∀Qi , then

�
i Qi is compact and

A(u, α) = ∀Q
i Qi

.

Notice that Theorem 7.1 is a special case of this, with Qi = {0, 1}, ui = 0 and
α(p) = p(0) ∧ p(1).

However, the proof of this theorem given in [12] is for the specification of the algorithm
interpreted in the Scott model. As shown in [12], in the Scott model, a quantification
functional ∀S is continuous if and only if the set S is topologically compact. Hence, in the
above theorem, all the sets Qi are topologically compact in the classical sense, and, thus, by
the topological Tychonoff theorem, so is the product

�
i Qi. Now, topological compactness

of the product was used in order to prove termination of the above algorithm. But, in the
current setting, although the operational notion of compactness is motivated by the classical
topological one, it is not literally the same in the absence of parallel features, and hence it is
not immediately clear whether the product is compact. Alex Simpson communicated to us
a proof of termination of the above algorithm without assuming topological compactness
of the product, establishing the operational version of Theorem 7.7 (Lemma 7.10 below).
The proof that if the algorithm terminates, then it produces the correct result is essentially
the same as that given in [12] (Lemma 7.9 below).

For each natural number k, define, for any u and α,

A(k)(u, α)(p) = A(u(k), α(k))(λs.p(s(k)))

where, for any given sequence t, we write t
(k)
i = ti+k. For the remainder of this section,

let Qi, ui and αi be as in the premise of Theorem 7.7. We show that A(k)(u, α) : ((Nat→
σ) → S) → S is the universal quantifier of

�
i Qi+k. Then the theorem amounts to the

special case k = 0.

Lemma 7.8. For u and α as above, and any k,

A(k)(u, α)(p) = αk(λx.p(if A(k+1)(u, α)(λs.p(x :: s)) then u(k)))
= p(if αk(λx.A(k+1)(u, α)(λs.p(x :: s)) then u(k))).

Proof. The first equation is established by induction on k and the second by case analysis
on whether A(k+1)(u, α)(λs.p(x :: s)) holds for all x ∈ Qk.

Hence the program B(p, k) = A(k)(u, α)(p) satisfies the equation

B(p, k) = p(if αk(λx.B(λs.p(x :: s), k + 1)) then u(k)). (1)

Lemma 7.9. If B(p, k) = �, then p(s) = � for all s ∈ �
i Qi+k.

Proof. If we define

B0(p, k) = ⊥
Bn+1(p, k) = p(if αk(λx.Bn(λs.p(x :: s), k + 1)) then u(k)),

then B =
�

n Bn by rational completeness. Hence if B(p, k) = � then there is an n such
that Bn(p, k) = �. But, by induction on n using monotonicity of p, it is clear that, for any
n, the condition Bn(p, k) = � implies p(s) = � for all s ∈ �

i Qi+k.

As discussed above, the following proof of the converse of the previous lemma is due
to Alex Simpson:

Lemma 7.10. If p(s) = � for all s ∈ �
i Qi+k, then B(p, k) = �.
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Proof. For the sake of contradiction, assume that the premise holds but the conclusion
fails, i.e. B(p, k) = ⊥. We show by induction on j that for every j there is an element
yk+j ∈ Qk+j such that

p(yk, yk+1, . . . , yk+j , �⊥) = ⊥,

B(λs.p(yk :: yk+1 :: · · · :: yk+j :: s), k + j + 1) = ⊥.

For j = 0, this amounts to p(yk, �⊥) = ⊥ and B(λs.p(yk :: s), k +1) = ⊥. But, by Eq. (1)
and the assumptions B(p, k) = ⊥ and p(u(k)) = �, we must have that p(⊥) = ⊥ and
hence that ∀x ∈ Qk.B(λs.p(x :: s), k + 1) = ⊥, which means that such a yk must exist.
The proof of the induction step is identical, but replaces the assumption B(p, k) = ⊥ by
the induction hypothesis given by the above two equations. By Theorem 6.7, there exists
s : Nat → σ in D such that s(j) = yk+j . Hence the sequences yk, yk+1, . . . , yk+j , �⊥
form a j-indexed rational chain with supremum s, and, by continuity, p(s) = ⊥. However,
p(s) = � because s ∈ �

j≥k Qj by construction.

We observe that this proof can be seen as a special case of that of the topological
Tychonoff theorem for a well-ordered set of indices given in [42].

8 Remarks on parallel convergence
Abramsky showed that parallel-or on the booleans is not definable from parallel conver-
gence [2], Stoughton showed that parallel-or is equivalent to the parallel conditional at
ground types [38], and Plotkin showed that the parallel conditional is not PCF-definable but
that the Scott model is fully abstract for PCF extended with the parallel conditional [31].
On the other hand, it is easy to see that parallel convergence is definable from parallel-or.
The Scott model of PCF fails to capture contextual equivalence, but, combining [38] and
[31], it becomes fully abstract for PCF extended with parallel-or.

As we have seen, a variety of results of domain theory as applied to programming lan-
guage semantics turn out to be valid in a sequential setting, despite the above mismatch of
the Scott model with PCF. However, we have found that three results do depend on parallel
features. But, because parallel-or is needed to obtain full abstraction, it is interesting that
two these results depend on a form of parallelism that is weaker than parallel-or:

Theorem 8.1. The following are equivalent.

1. There is a parallel convergence function.

2. Open sets are closed under the formation of finite unions.

3. The upper set of any finite set of finite elements is open.

4. For every pair of elements x � y of type σ, there is a “path” p ∈ (S → σ) with
p(⊥) = x and p(�) = y.

Proof. The equivalence of (1)–(3) is proved in Propositions 3.7 and 4.20.
(4) =⇒ (1): For f, g : S → S defined by f(x) = x and g(x) = �, we have f � g,

and hence a path p : S → (S → S) from f to g. But then its transpose S × S → S is
parallel convergence.

(1) =⇒ (4): This direction of the proof was communicated to us by Alex Simpson.
By induction on types, define cσ : S × σ × σ → σ by

cγ(t, x, y) = if t ∨ x == y then y,

cσ×σ�(t, �x, x��, �y, y��) = �cσ(t, x, y), cσ�(t, x�, y�)�,
cσ→τ (t, f, g) = λx.cτ (t, f(x), g(x)),
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where γ is ground. Then, by induction on σ, it is easy to see that cσ(⊥, x, y) is the meet
of x and y in the contextual order and that cσ(�, x, y) = y. In particular, if x � y then
cσ(⊥, x, y) = x. Hence we can define p(t) = cσ(t, x, y).

Condition (4) hasn’t shown up in our work so far, but it appears occasionally in syn-
thetic and axiomatic domain theory. As far as we know, it hasn’t been previously observed
that this is equivalent to (1). The third aforementioned result is that if every upper set
is saturated, then parallel convergence is definable (Proposition 5.17); but we don’t know
whether the converse holds. As a simple corollary of Condition (4), we have:

Remark 8.2. In the absence of parallel convergence, there are ascending ω-chains that
have a least upper bound but are not rational. For example, let x � y in some type σ,
and consider the chain that starts with x and then continues with y repeatedly. If this were
indexed by l ∈ (ω → σ) then we could define a path from x to y by composing l with the
sequential program e ∈ (S → ω) defined by e(x) = if x then 1.

In is an interesting question, for which we don’t know the answer, whether there are
ascending ω-chains which have suprema, such that for some program either the image
doesn’t have a supremum or if it does then it is not preserved.

From our perspective, what is interesting regarding the above theorem is that, despite
the fact that the fundamental axiom of classical topology given by Theorem 8.1(2) fails
in the absence of parallel features, a wealth of classical topological theorems on domain
theory prove to be valid in a sequential setting, although with significantly different proofs.

9 Open problems and further developments
A compelling aspect of the operational development of the domain theory and topology of
program types is that many of the traditional definitions arise as theorems, showing that
they are inevitable. In particular, in domain-theoretic denotational semantics, one defines
domains and continuous functions and then chooses to interpret types as domains and pro-
grams as continuous functions, motivated by (mathematical and computational) intuition.
Here, independently of any denotational model, it just happens that types are rationally
complete orders and programs are continuous functions at an uninterpreted, operational
level. Of course, what is relevant is the fact from experience that completeness and con-
tinuity lead to interesting applications. This is the case for both the denotational and the
operational development of the theory. What is new is that, by working operationally,
a wealth of domain-theoretic and topological machinery is available for sequential pro-
gramming languages, with respect to contextual equivalence. But we have taken care of
developing the theory in such a way that it also applies to languages with parallel features.

A main reason to consider new models, such as Milner’s and games models, has been
the fact that Scott models of sequential programming languages fail to be fully abstract.
Here we have given compelling evidence, in the form of theorems and applications, that
domain theory and topology are compatible with contextual equivalence of sequential pro-
gramming languages, despite the failure of full abstraction of Scott models. The trick is
to extract domain theory and topology from a programming language rather than to im-
pose it via a denotational model. But the avoidance of syntactic manipulations suggests
that our theory could be developed in a general axiomatic framework rather than just term
models. This would make our results available to models that are not constructed from
domain-theoretic or topological data, in particular games models. It is also plausible that
the present development could be formalized in an operationally interpreted logic in the
sense of Longley and Plotkin [22].

The main unresolved open-ended question is what class of programming languages the
present theory can be developed for. Our use of sequence types of the form (Nat→ σ) can
be easily replaced by lazy lists by applying the bisimulation techniques of [14] to prove the
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correctness of evident programs that implement the SFP property for lazy lists. There is no
difficulty in developing our results in a call-by-value setting. An operational domain theory
of recursive types, which is built upon ideas developed here, has been developed in [17,
18] by the second-named author, where well known denotational algebraic-compactness
results are established with respect to contextual equivalence. But computational features
such as state, control and concurrency, and non-determinism and probability seem to pose
genuine challenges. In particular, the proof of the key Lemma 4.11 doesn’t go through in
the presence of state or control, because extensionality fails. In the presence of probability
or of abstract data types for real numbers, types won’t be algebraic in general and hence a
binary notion of finiteness, analogous to the way-below relation in classical domain theory,
needs to be developed. And there are similar questions for other traditional computational
effects.
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