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1 Introduction

By definition, the intersection of finitely many open sets of any topological space is
open. Nachbin [6] observed that, more generally, the intersection of “compactly many”
open sets is open (see Section 2 for a precise formulation of this fact). Of course, this
is to be expected, because compact sets are intuitively understood as those sets that, in
some mysterious sense, behave as finite sets. Moreover, Nachbin applied this to obtain
elegant proofs of various facts concerning compact sets in topology and elsewhere.

A simple calculation (performed in Section 2) shows that Nachbin’s observation
amounts to the well known fact that if a spaceX is compact, then the projection map
Z ×X → Z is closed for every spaceZ.

It is also well known that the converse holds: if a spaceX has the property that the
projectionZ×X → Y is closed for every spaceZ, thenX is compact. We reformulate
this as a converse of Nachbin’s observation, and apply this to obtain further elegant
proofs of (old and new) theorems concerning compact sets.

We provide a new proof of (a reformulation of) the fact that a spaceX is compact
if and only if the projection mapZ × X → Z is closed for every spaceZ. This is
generalized in various ways, to obtain results about proper maps, relative compactness,
and compactly generated spaces.
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2 Some characterizations of the notion of compactness

2.1 DEFINITION. Let Z be a topological space and{Vi | i ∈ I} be a family of open
sets ofZ. If the index setI comes endowed with a topology, such a family will be
calledcontinuously indexedif wheneverz ∈ Vi, there are neighbourhoodsT of z and
U of i such thatt ∈ Vu for all t ∈ T andu ∈ U . This amounts to saying that the graph
{(z, i) ∈ Z × I | z ∈ Vi} of the family is open in the product topology.

2.2 A spaceX is compact if and only if the set
⋂

x∈X Vx is open for any continuously
indexed family{Vx | x ∈ X} of open sets of any spaceZ.

That is, not only are the open sets of any space closed under the formation of compact
intersections, in addition to the postulated finite intersections, but also this characterizes
the notion of compactness. In the “synthetic” formulation of compactness developed
in [2, Chapter 7], we used continuous universal quantification functionals, for which
function spaces were required (see Section 3 below). A related formulation that avoids
the function-space machinery is the following:

2.3 A spaceX is compact if and only if for any spaceZ and any open setW ⊆ Z×X,
the set{z ∈ Z | ∀x ∈ X.(z, x) ∈ W} is open.

This set can be written, more geometrically, as{z ∈ Z | {z} ×X ⊆ W}, but the
given logical formulation emphasizes the connection with [2]. To prove 2.2 and 2.3,
first observe that any open setW ⊆ Z × X gives rise to the continuously indexed
family {Vx | x ∈ X} of open sets ofZ defined byz ∈ Vx iff (z, x) ∈ W , and that
this construction is a bijection from open sets ofZ × X to continuouslyX-indexed
families of open sets ofZ. Moreover,z ∈

⋂
x∈X Vx iff ∀x ∈ X.(z, x) ∈ W . Next,

consider the closed setF
def= (Z ×X) \W and the projectionπ : Z ×X → Z. Then

z ∈ π(F ) iff ∃x ∈ X.(z, x) ∈ F . By the De Morgan law for existential and universal
quantifiers,Z \ π(F ) = {z ∈ Z | ∀x ∈ X.(z, x) ∈ W}. It follows that:

2.4 LEMMA . The following are equivalent for spacesX andZ.

1. The open sets ofZ are closed under continuouslyX-indexed intersections.

2. For any open setW ⊆ Z ×X, the set{z ∈ Z | ∀x ∈ X.(z, x) ∈ W} is open.

3. The projectionZ ×X → Z is a closed map.

This concludes the proof of 2.2 and 2.3, because it is well known that compactness
of X is equivalent to closedness of the projectionZ × X → Z for everyZ. A self-
contained proof of a generalization of 2.3, which doesn’t rely on previous knowledge
of the closed-projection characterization of compactness, will be given in Section 4.

2



3 A further characterization

We apply the formulation of compactness given by 2.3 to derive the “synthetic” formu-
lation based on function spaces [2, Chapter 7]. No previous knowledge on function-
space topologies is required.

3.1 DEFINITION. For given spacesS andX, we denote bySX the set of continuous
mapsX → S endowed with a topology such that1

1. the evaluation mape : SX ×X → S defined bye(f, x) = f(x) is continuous,

2. for any spaceZ, if f : Z × X → S is continuous then so is its exponential
transposēf : Z → SX defined byf̄(z) = (x 7→ f(z, x)).

Such an exponential topology doesn’t always exist, but when it does it is easily seen
to be unique. Criteria for existence and explicit constructions can be found in e.g. [3]
or [2, Chapter 8], or in the extensive set of references contained therein, but they are
not necessary for our purposes.

3.2 DEFINITION. Let S be the Sierpinski space with an isolated point> (true) and a
limit point ⊥ (false). That is, the open sets are∅, {>} and{⊥,>}, but not{⊥}.

Then a mapp : X → S is continuous iffp−1(>) is open, and a setU ⊆ X is open
iff its characteristic mapχU : X → S is continuous. Previous proofs of the following
theorem were based on the fact that if the exponentialSX exists, then its topology is the
Scott topology. The present proof doesn’t require this knowlegde, relying only on 2.3
and the universal property of exponentials given by Definition 3.1.

3.3 If the exponentialSX exists, then the following are equivalent:

1. X is compact.

2. The universal-quantification functionalA : SX → S defined by

A(p) = > ⇐⇒ ∀x ∈ X.p(x) = >

is continuous.

PROOF (⇓): Because the evaluation mape : SX × X → S is continuous, the set
W

def= e−1(>) is open, and hence{p ∈ SX | ∀x ∈ X.(p, x) ∈ W} = A−1(>) is open
by compactness ofX, and thereforeA is continuous.

(⇑): Let Z be any space andW ⊆ Z ×X be an open set. Because the transpose
w : Z → SX of χW : Z × X → S is continuous, so isA ◦ w : Z → S, and hence
V

def= (A ◦ w)−1(>) is open. Butz ∈ V iff A(w(z)) = > iff ∀x ∈ X.w(z)(x) = >
iff ∀x ∈ X.(z, x) ∈ W . This shows that{z ∈ Z | ∀x ∈ X.(z, x) ∈ W} is open, and
hence thatX is compact. �

1Because the category of continuous maps of topological spaces is well pointed, this coincides with the
categorical notion of exponential.
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4 Generalization of Section 2

A proof that compactness ofX implies closedness of the projectionZ ×X → Z for
every spaceZ, which amounts to the implication 2.3(⇒), is relatively easy. We now
formulate and prove a generalization of this implication for families of compact subsets
of the spaceX.

4.1 DEFINITION. We say that a family{Qy | y ∈ Y } of compact subsets ofX is
continuously indexed2 by a topological spaceY if for every neighbourhoodU of Qy,
there is a neighbourhoodT of y such thatQt ⊆ U for all t ∈ T . This amounts to
saying that the set{y ∈ Y | Qy ⊆ U} is open for every open setU ⊆ X.

The implication 2.3(⇒) is a special case of the following, considering the spaceY with
just one pointy and the trivial familyQy = X.

4.2 LEMMA . Let{Qy | y ∈ Y } be a continuously indexed family of compact sets of a
spaceX, let Z be any space, andW ⊆ Z ×X be an open set. Then the set

{(z, y) ∈ Z × Y | ∀x∈Qy
.(z, x) ∈ W}

is open.

Equivalently,
Vy

def= {z ∈ Z | {z} ×Qy ⊆ W}

is a continuously indexed family of open sets ofZ.

PROOF To show that the setM
def= {(z, y) ∈ Z × Y | {z} × Qy ⊆ W} is open,

we construct, for any pair(z, y) ∈ M , open setsV andT with (z, y) ∈ V × T ⊆ M .
So assume that{z} × Qy ⊆ W . For anyx ∈ Qy, we have that(z, x) ∈ W and
hence there are open setsUx andVx with (z, x) ∈ Vx × Ux ⊆ W by definition of the
product topology. ThenQy ⊆

⋃
{Ux | x ∈ Qy}, and, by compactness ofQy, there is

a finite setI ⊆ Qy such that alreadyQy ⊆
⋃
{Ui | i ∈ I}. Let V

def=
⋂

i∈I Vi. Then
V is an open neighbourhood ofz. By hypothesis, there is an open neighbourhoodT
of y such thatQt ⊆

⋃
{Ui | i ∈ I} for all t ∈ T . To show thatV × T ⊆ M ,

let (v, t) ∈ V × T . For anyx ∈ Qt, there isi ∈ I such thatx ∈ Ui, and hence
(v, x) ∈ V × Ui ⊆ Vi × Ui ⊆ W , which shows that{v} ×Qt ⊆

⋃
i∈I V × Ui ⊆ W ,

and therefore that(v, t) ∈ M , as required. �

That closedness of the projectionZ × X → Z for every spaceZ implies com-
pactness ofX, which amounts to the implication 2.3(⇐), is less trivial. Typical proofs
apply the characterization of compactness via cluster points of filters (see e.g. the proof
of [1, Lemma 10.2.1, page 101]). We offer a proof of a slight generalization of 2.3(⇐)
that is closely related to, and inspired by those of [3, Lemma 4.4] and [2, Theorem 9.5].

2This is equivalent to continuity of the mapy 7→ Qy when the collection of compact sets is endowed
with the upper Vietoris topology. For a familyVx of open sets ofZ, however, there isn’t a topology on the
collection of open sets ofZ such that continuity of the family is equivalent to continuity of the mapx 7→ Vx,
unlessZ is an exponentiable space — see e.g. [3, Corollary 4.6].
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This argument will be reused later to prove a more general fact about relative compact-
ness (Section 6).

Recall that a collectionC of open sets is called directed if for any finite setS ⊆ C
there isU ∈ C with

⋃
S ⊆ U . Any collection of open sets can be made directed by

adding the finite unions of its members. Hence a setQ is compact if and only if every
directed open cover ofQ has a member that coversQ.

4.3 LetQ be a subset of a spaceX. If for every spaceZ and any open setW ⊆ Z×X,
the set{z ∈ Z | {z} ×Q ∈ W} is open, thenQ is compact.

PROOF Let C be a directed open cover ofQ.
We first construct a spaceZ from X andC: its points are the open sets ofX, and

V ⊆ Z is open iff (1)U ∈ V andU ⊆ U ′ ∈ Z together implyU ′ ∈ V , and (2) if⋃
C ∈ V thenU ∈ V for someU ∈ C. Such open sets are readily seen to form a

topology3, using the fact thatC is directed, and ifU is an open subset of a member ofC
then↑U

def= {U ′ ∈ Z | U ⊆ U ′} is clearly open.
Next, we takeW

def= {(U, x) ∈ Z × X | x ∈ U}. To show thatW is open, let
(U, x) ∈ W and consider two cases. (1)x ∈

⋃
C: Thenx ∈ U ′ for someU ′ ∈ C with

x ∈ U ′, and hence(U, x) ∈ ↑(U ∩U ′)× (U ∩U ′) ⊆ W . (2)x 6∈
⋃
C: ThenU 6⊆

⋃
C

and hence↑U is open, and(U, x) ∈ ↑U × U ⊆ W .
Finally, by the hypothesis, the setV

def= {U ∈ Z | {U} × Q ⊆ W} is open, and
clearlyU ∈ V iff Q ⊆ U . Hence

⋃
C ∈ V and so some member ofC is in V , that is,

coversQ, by construction of the topology ofZ, as required. �

For future reference, we summarize part of the above development as follows:

4.4 LEMMA . The following are equivalent for any subsetQ of any topological spaceX.

1. Q is compact.

2. For every spaceZ, the set{z ∈ Z | ∀q ∈ Q.(z, q) ∈ W} is open whenever the
setW ⊆ Z ×X is open.

3. For every spaceZ, the set{z ∈ Z | {z} × Q ⊆ W} is open whenever the set
W ⊆ Z ×X is open.

5 Sample “synthetic” proofs of old theorems

We redevelop the synthetic proofs of [2, Chapter 9] almost literally, but without invok-
ing the function-space machinery or the lambda-calculus.

5.1 If X is Hausdorff andQ ⊆ X is compact, thenQ is closed inX.

PROOF BecauseX is Hausdorff, the complementW of the diagonal is open. Hence
X \ Q = {x ∈ X | ∀q ∈ Q.x 6= q} = {x ∈ X | ∀q ∈ Q.(x, q) ∈ W} is open by
Lemma 4.4, and soQ is closed. �

3This is like the Scott topology, but defined with respect to one particular directed set, rather than all
directed sets. One cannot use the Scott topology for this proof, as, in general, it doesn’t give rise to openness
of the setW constructed in the proof — see e.g. [3, Corollary 4.6].
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5.2 If X is compact andF ⊆ X is closed thenF is compact.

PROOF We use Lemma 4.4. LetZ be any space andW ⊆ Z × X be open. We
have to show thatV

def= {z ∈ Z | ∀x ∈ F.(z, x) ∈ W} is open. Butz ∈ V iff
∀x ∈ X.x ∈ F =⇒ (z, x) ∈ W iff ∀x ∈ X.x 6∈ F ∨ (z, x) ∈ W . Hence
V = {z ∈ Z | ∀x ∈ X.(z, x) ∈ W ′} whereW ′ = (Z × (X \F ))∪W , andV is open
by compactness ofX, openness ofW ′ and 2.3(⇒). �

5.3 If f : X → Y is continuous and the setQ ⊆ X is compact, then so isf(Q).
PROOF For any spaceZ and any open setW ⊆ Z × Y , we have that{z ∈ Z |
∀y ∈ f(Q).(z, y) ∈ W} = {z ∈ Z | ∀x ∈ Q.(z, f(x)) ∈ W}, which is open by
compactness ofQ, because the setW ′ defined by(z, x) ∈ W ′ iff (z, f(x)) ∈ W is
open by continuity off . �

5.4 If X andY are compact spaces then so isX × Y .

PROOF We show thatV
def= {z ∈ Z | ∀(x, y) ∈ X × Y.(z, x, y) ∈ W} is open

for any spaceZ and any open setW ⊆ Z × X × Y . By compactness ofY , the set
W ′ def= {(z, x) ∈ Z ×X | ∀y ∈ Y.(z, x, y) ∈ W} is open, and, by compactness ofX,
the set{z ∈ Z | ∀x ∈ X.(z, x) ∈ W ′} = V is open, as required. �

Although we don’t need the function-space machinery to develop the core of topol-
ogy, we still can use the function-space-free synthetic approach to prove theorems
about function spaces, as we have done in Section 3. Moreover, the abstract defini-
tion of function space as an exponential again suffices.

5.5 If Y is Hausdorff, then so is the exponentialY X if it exists.

PROOF The codiagonal ofY X is {(f, g) ∈ Y X × Y X | ∃x ∈ X.f(x) 6= g(x)} =⋃
x∈X{(f, g) ∈ Y X × Y X | f(x) 6= g(x)}, which is a union of open sets, because

W ⊆ Y X ×Y X defined by(f, g) ∈ W iff f(x) 6= g(x) is open, using openness of the
codiagonal ofY and continuity of the evaluation mapY X ×X → Y . �

For the proof of the following dual proposition, recall that a space is discrete iff its
diagonal is open.

5.6 If X is compact andY is discrete, then the exponentialY X is discrete if it exists.

PROOF The diagonal ofY X is {(f, g) ∈ Y X × Y X | ∀x ∈ X.f(x) = g(x)},
which is open by compactness ofX, because the setW ⊆ Y X × Y X × X defined
by (f, g, x) ∈ W iff f(x) = g(x) is open, using openness of the diagonal ofY and
continuity of the evaluation map. �

As discussed above, these last two propositions don’t require an intrinsic descrip-
tion of the topology ofY X . A partial description is given by the following:

5.7 If the exponentialY X exists, and ifQ ⊆ X is compact andV ⊆ Y is open, then
the setN(Q,V ) def= {f ∈ Y X | f(Q) ⊆ V } is open.

PROOF f ∈ N(Q,V ) iff ∀q ∈ Q.f(q) ∈ V . The result then follows from the fact
thatW ⊆ Y X ×X defined by(f, x) ∈ W iff f(x) ∈ V is open, using continuity of
the evaluation map. �
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Recall that a continuous mapf : X → Y is called proper if the product map

idZ ×f : Z ×X → Z × Y

is closed for every spaceZ, whereidZ : Z → Z is the identity map [1].

5.8 The following are equivalent for any continuous mapf : X → Y .

1. f is proper.

2. For every spaceZ and every open setW ⊆ Z ×X, the set

{(z, y) ∈ Z × Y | {z} × f−1{y} ⊆ W}

is open.

3. f is closed and the setf−1(Q) is compact for every compact setQ ⊆ Y .

4. f is closed and the setf−1{y} is compact for every pointy ∈ Y .

5. {f−1{y} | y ∈ Y } is a continuously indexed family of compact sets ofX.

We first refomulate closedness in terms of open sets. By taking complements, a con-
tinuous mapg : A → B is closed iff for every open setU ⊆ A, the setB \ g(A \ U)
is open. But an easy calculation shows that this set is{b ∈ B | g−1{b} ⊆ U}. This
proves:

5.9 LEMMA . A continuous mapg : A → B is closed if and only if for every open set
U ⊆ A, the set{b ∈ B | g−1{b} ⊆ U} is open.

PROOF of 5.8.

(1) ⇔ (2): Calculate that(idZ ×f)−1{(z, y)} = {z} × f−1{y} and then apply
Lemma 5.9 tog = idZ ×f .

(1, 2) ⇒ (3): Considering the case in whichZ is the one-point space, we see that
any proper map is closed. To show thatf−1(Q) is compact, letZ be any space and
W ⊆ Z × X be an open set. Then the setT

def= {(z, y) | {z} × f−1{y} ⊆ W} is
open by hypothesis, and hence the setU

def= {z ∈ Z | {z} × Q ⊆ T} is open by
Lemma 4.4. Butz ∈ U iff (z, y) ∈ T for all y ∈ Q, iff {z} × f−1{y} ⊆ W for all
y ∈ Q, iff {z} × f−1(Q) ⊆ W . BecauseZ andW are arbitrary, a second application
of Lemma 4.4 shows thatf−1(Q) is compact, as required.

(3) ⇒ (4): Singletons are compact.

(4) ⇒ (5): By Lemma 5.9 applied tog = f , the set{y ∈ Y | f−1{y} ⊆ U} is
open for everyy ∈ Y and every open setU ⊆ X.

(5) ⇒ (2): This follows directly from Lemma 4.2. �

7



The above characterizations (3) and (4) of propriety are of course well known. The
development of synthetic proofs was left as an exercise in [2]. Characterization (2) is
clearly just a reformulation of the definition using the language of open sets. Formula-
tion (5) seems to be new.

6 Relative compactness

For some topological questions regarding local compactness and function spaces, it is
fruitful to consider the domain-theoretic way-below relation on open sets [5]. Again
in a context pertaining to function spaces, Escardó, Lawson and Simpson [4] found it
profitable to generalize this to arbitrary subsets of topological spaces.

For subsetsS andT of a topological spaceX, we define

S � T ⇐⇒ every cover ofT by open sets ofX

has a finite subcollection that coversS.

In this case one says thatS is way belowT , or compact relativeto T . Then it is
immediate that a set is compact iff it is compact relative to itself. We also define

S b T ⇐⇒ S ⊆ T ◦.

The following was formulated as [4, Lemma 4.2]:

6.1 LetX andY be topological spaces.

1. If F � X is closed, thenF is compact.

2. If X is Hausdorff andS � T holds inX, thenS ⊆ T .

3. If f : X → Y is continuous andS � T in X, thenf(S) � f(T ) holds inY .

4. If S � T in X andA � B in Y , thenS ×A � T ×B holds inX × Y .

5. If W ⊆ Y ×X is open andS � T holds inX, then

{y ∈ Y | {y} × T ⊆ W} b {y ∈ Y | {y} × S ⊆ W}.

Assertion (1) generalizes the fact that a closed subset of a compact space is com-
pact, (2) the statement that a compact subset of a Hausdorff space is closed, (3) the fact
that continuous maps preserve compactness, and (4) the Tychonoff theorem in the finite
case. In this section we prove (5) and a converse, generalizing 2.3 and the development
of Section 4, and use this to derive (1)–(4), generalizing the development of Section 5.
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6.2 THEOREM. The following are equivalent for any two subsetsS andT of a topo-
logical spaceX.

1. S � T .

2. For every spaceZ and every open setW ⊆ Z ×X,

{z ∈ Z | {z} × T ⊆ W} b {z ∈ Z | {z} × S ⊆ W}.

3. For every spaceZ, everyz ∈ Z and every open setW ⊆ Z ×X,

{z} × T ⊆ W =⇒ V × S ⊆ W for some neighbourhoodV of z.

4. For every spaceZ and allM,N ⊆ Z ×X,

M b N =⇒ {z ∈ Z | {z} × T ⊆ M} b {z ∈ Z | {z} × S ⊆ N}.

PROOF (2) ⇔ (3): By definition of interior.(2) ⇔ (4): ConsiderW = N◦ in one
direction andM = N = W in the other.

(1) ⇒ (3): Assume that{z} × T ⊆ W . Then for anyt ∈ T , we have that
(z, t) ∈ W and hence there are open setsUt andVt with (z, t) ∈ Vt × Ut ⊆ W .
BecauseT ⊆

⋃
t∈T Ut andS � T , there is a finite setI ⊆ T such thatS ⊆

⋃
i∈I Ui.

ThenV
def=

⋂
i∈I Vi is open andz ∈ V . To show thatV × S ⊆ W , let (v, s) ∈ V × S.

Becauses ∈ S ⊆
⋃

i∈I Ui, there isj ∈ I such thats ∈ Uj , and becauseV =
⋂

i∈I Vi

we have thatv ∈ Vj . Hence(v, s) ∈ Vj × Uj ⊆ W , as required.

(3) ⇒ (1). To show thatS � T , let C be a directed open cover ofT . We have
to conclude thatS ⊆ U for someU ∈ C. We first construct a spaceZ from X andC,
and an open setW ⊆ Z ×X as in the proof of 4.3. BecauseT ⊆

⋃
C, we have that

{
⋃
C} × T ⊆ W . Hence, by the hypothesis,V × S ⊆ W for some neighbourhood

V of
⋃
C, which may be assumed to be open. By construction of the topology ofZ,

we have thatU ∈ V for someU ∈ C. To show thatS ⊆ U , concluding the proof, let
s ∈ S. Then(U, s) ∈ V × S ⊆ W , and hences ∈ U , as required. �

Notice that 2.3 follows directly from Theorem 6.2(1 ⇔ 2), because a set is open iff
it is contained in its interior. Observe also that the implication(1) ⇒ (3) amounts to
saying that if the relation{y} × T ⊆ W holds, and if we makeT significantly smaller
by passing to a set way below, then we can make{y} significantly bigger by passing to
a whole neighbourhood so that the relation will still hold. We now apply Theorem 6.2
to generalize some of the proofs of Section 5.

6.3 If X is Hausdorff andS � T , thenS ⊆ T .

PROOF Because the complementW ⊆ X × X of the diagonal is open asX is
Hausdorff, Theorem 6.2(1 ⇒ 2) shows thatX \ T = {x ∈ X | {x} × T ⊆ W} b
{x ∈ X | {x} × S ⊆ W} = X \ S, and henceS ⊆ T . �
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6.4 If F is closed inX andF � X, thenF is compact.

PROOF LetZ be any space andW ⊆ Z×X be open. ThenW ′ = (Z×(X\F ))∪W

is also open, and Theorem 6.2(2 ⇒ 1) givesM
def= {z ∈ Z | {z}×X ⊆ W ′} b N

def=
{z ∈ Z | {z} × F ⊆ W ′}. But one readily checks thatM and N are equal to
{z ∈ Z | ∀x ∈ F.(z, x) ∈ W}, and hence, being contained in its own interior, this set
is open. Because the spaceZ and the open setW ⊆ Z ×X are arbitrary, the desired
result follows from Lemma 4.4. �

6.5 If f : X → Y is continuous andS � T in X, thenf(S) � f(T ) holds inY .

PROOF Let Z be a space,W ⊆ Z × Y be open, and assume that{z} × f(T ) ⊆ W .
ThenW ′ def= (idZ ×f)−1(W ) = {(z, x) ∈ Z ×X | (z, f(x)) ∈ W} is also open by
continuity off , and{z}×T ⊆ W ′. By Theorem 6.2(1 ⇒ 3), there is a neighbourhood
V of z with V × S ⊆ W ′. HenceV × f(S) ⊆ W . Because the spaceZ, the open
setW ⊆ Z × Y and the pointz ∈ Z are arbitrary, Theorem 6.2(3 ⇒ 1) shows that
f(S) � f(T ), as required. �

6.6 If S � T in X andA � B in Y , thenS ×A � T ×B holds inX × Y .

PROOF Let Z be a space and letM,N ⊆ Y ×X × Y with M b N . Then, by two
successive applications of Theorem 6.2(1 ⇒ 4), we first have that

M ′ def= {(z, x0) ∈ Z ×X | {(z, x)} ×B ⊆ M}

b N ′ def= {(z, x) ∈ Z ×X | {(z, x)} ×A ⊆ N}

and then thatM ′′ def= {z ∈ Z | {z} × T ⊆ M ′} b N ′′ def= {z ∈ Z | {z} × S ⊆ N ′}.
But one readily checks thatM ′′ = {z ∈ Z | {z} × T × B ⊆ M} andN ′′ = {z ∈
Z | {z} × S × A ⊆ N}. Because the spaceY and the setsM,N ⊆ Y ×X × Y are
arbitrary, the result follows from Theorem 6.2(4 ⇒ 1). �

7 Compactly generated spaces

In this section we assume familiarity with the notions and results developed in [4] and
with domain theory [5].

Let E be the class of all spaces that are exponentiable in the category of topological
spaces, andC ⊆ E be any productive class of spaces. IfC consists of the compact
Hausdorff spaces, then theC-generated spaces (orC-spaces for short) are known as the
compactly generated spaces.

The categorical product in the category ofC-spaces is given by theC-coreflection
of the topological product:X ×C Y = C(X × Y ). Recall that theC-coreflection
CX of a topological spaceX is obtained by keeping the same points and suitably
refining the given topology ofX. By [4, Theorem 5.4], we know thatX ×C Y =
X ×E Y for all C-spacesX andY . That is, theC-product doesn’t depend onC, even
though theC-coreflection does. We were thus led to ask whether there is an instrinsic
characterization of theC-product [4, Problem 9.3]. We now develop and answer to
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this question, formulated as Theorem 7.2 below. We know that the Sierpinski space
is aC-generated space if and only if the generating classC includes a space in which
not every open set is closed [4, Lemma 4.6(ii)]. In particular, the Sierpinski space is
E-generated.

7.1 LEMMA . Assume that the Sierpinski space isC-generated. For aC-generated
spaceX, let

OC X

be the lattice of open sets ofX endowed with the topology that makes the bijection
U 7→ χU : OC X → SX into a homeomorphism, where the exponential is calculated
in the categoryTopC of C-spaces.

1. The topology ofOC X is finer than the Scott topology.

2. The topology ofOC X coincides with the Scott topology ifC generates all com-
pact Hausdorff spaces.

3. A setW ⊆ Y ×C X is open if and only if its transposew : Y → OC X defined
byw(y) = {x ∈ X | (y, x) ∈ W} is continuous.

4. The set{(U, x) ∈ OC X ×C X | x ∈ U} is open in theC-product.

PROOF (1): [4, Theorem 5.15]. (2): [4, Corollary 5.16]. (3): By definition of
exponential transpose. (4): Its transpose is the identity ofOC X. �

If C doesn’t generate all compact Hausdorff spaces, the second item doesn’t neces-
sarily hold. For example, ifC is a singleton consisting of the one-point compactifica-
tion of the discrete natural numbers (known the “generic convergent sequence”), then
a space isC-generated if and only if it is sequential, and for a sequential spaceX we
have thatU ⊆ OC X is open if and only if it is upwards closed and inaccessible by
unions of countable directed sets. IfX is a Lindel̈of space, as is the case ifX is a QCB
space, this does coincide with the Scott topology, but, in general, this is strictly finer
than the Scott topology. The following holds without any assumption onC other than
that it is contained inE and that it is productive.

7.2 THEOREM. If X andY areC-spaces, then the following are equivalent for any set
W ⊆ Y ×X.

1. W is open inY ×C X.

2. (a) For eachy ∈ Y , the setUy
def= {x ∈ X | (y, x) ∈ W} is open, and

(b) for each Scott open setU ⊆ OX, the setVU
def= {y ∈ Y | Uy ∈ U} is

open.

3. (a) For eachx ∈ X, the setVx
def= {y ∈ Y | (y, x) ∈ W} is open, and

(b) for each Scott open setV ⊆ O Y , the setUV
def= {x ∈ X | Vx ∈ V} is

open.
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PROOF We prove(1) ⇔ (2). A proof of (1) ⇔ (3) is obtained via the canonical
homeomorphismX ×C Y ∼= Y ×C X.

(1) ⇒ (2): As we have already discussed, ifW is open in theC-product, then it is
also open in theE-product. Because the Sierpinski spaceS is anE-space, its transpose
w : Y → OE X defined in the previous lemma is continuous. Then one readily checks
thatw(y) = Uy andw−1(U) = VU , which shows thatUy andVU are open, as required.

(2) ⇒ (1): By the hypothesis, the mapw : Y → OE X given byw = Uy is well
defined and continuous. But one readily checks that this is the transpose ofW defined
in Lemma 7.1, and henceW is open in theE-product, and therefore in theC-product,
as required. �

We now return to the subject of compactness. We henceforth assume that the Sier-
pinski space isC-generated.

7.3 THEOREM. The following are equivalent for any subsetQ of aC-spaceX.

1. The set{U ∈ OC X | Q ⊆ U} is open.

2. For everyC-spaceY , and every open setW ⊆ Y ×C X, the set

{y ∈ Y | {y} ×Q ⊆ W}

is open.

3. The universal-quantification functionalAQ : SX → S defined by

AQ(p) = > ⇐⇒ ∀x ∈ Q.p(x) = >

is continuous, where the exponential is calculated inTopC .

PROOF (1) ⇒ (2): One readily checks that the set{y ∈ Y | {y} ×Q ⊆ W} is the
same asVU in Theorem 7.2(2) for the choiceU = {U ∈ OC X | Q ⊆ U}.

(2) ⇒ (3) Because the evaluation mape : SX ×C X → S is continuous, the set
W

def= e−1(>) is open, and hence the set{p ∈ SX | {p}×Q ⊆ W} = {p ∈ SX | ∀x ∈
Q.p(x) = >} = A−1(>) is open by the hypothesis, and thereforeAQ is continuous.

(3) ⇒ (1): The set{U ∈ OC X | Q ⊆ U} is the inverse image of{>} for the
compositeAQ ◦ (U 7→ χU ) : OC X → SX → S. �

7.4 DEFINITION. When these equivalent conditions hold, we say thatQ is C-compact.

For example, it follows from the above observations that if the classC is a singleton
consisting of the generic convergent sequence, then aC-generated space (i.e. a sequen-
tial space) isC-compact if and only if every countable open cover has a finite subcover.
However, for compactly generated spaces, the same notion of compactness is obtained,
as shown by the next proposition. We first formulate an immediate consequence of the
above theorem.

7.5 COROLLARY. AC-spaceX isC-compact if and only if the projectionY×CX → Y
is closed for everyC-spaceY .

PROOF Use the De Morgan laws as in Section 2. �
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7.6 PROPOSITION. Any compact set isC-compact. If the classC generates all compact
Hausdorff spaces, the converse holds.

PROOF If Q is compact subset of aC-spaceX, then{U ∈ OX | Q ⊆ U} is
Scott open by definition of the Scott topology, and hence open inOC X by Lemma 7.1.
Conversely, ifQ is C-compact and the hypothesis holds, then{U ∈ OX | Q ⊆ U} is
Scott open by Lemma 7.1, and hence compact by definition of the Scott topology.�

Thus, even thoughY ×C X has a greater (and somewhat mysterious) supply of
open sets thanY × X, it is still the case that ifQ is compact then for every open set
W ⊆ Y ×C X, the set{y ∈ Y | {y} ×Q ⊆ W} is open.

7.7 DEFINITION. We say that aC-spaceX is C-Hausdorff if its diagonal is closed in
X ×C X, and that it isC-discreteif its diagonal is open inX ×C X.

If a C-space is Hausdorff (resp. discrete) then it isC-Hausdorff (resp. -discrete), because
the C-product has a topology finer than the topological product. There must beC-
Hausdorff spaces which are not Hausdorff, but I doubt that this holds for discreteness.

We have developed enough ideas and techniques to routinely develop proofs of the
following, and hence we omit them:

7.8 PROPOSITION. LetX andY beC-spaces.

1. If X andY areC-compact, then so isX ×C Y .

This potentially fails if one replacesC-compactness by topological compactness,
because theC-product has a topology finner than the topological product.

2. If f : X → Y is continuous andQ ⊆ X is C-compact, then so isf(Q).

3. If X is C-Hausdorff andQ ⊆ X is C-compact, thenQ is closed.

Notice that this is stronger than the statement that a compact subspace of a Haus-
dorff C-space is closed, as it has weaker hypotheses.

4. If F ⊆ X is closed andX is C-compact, then so isF .

5. If Y is C-Hausdorff, then so is the exponentialY X .

6. If X is C-compact andY is C-discrete, then the exponentialY X is C-discrete.

7. If Q ⊆ X is C-compact andV ⊆ Y is open, then{f ∈ Y X | f(Q) ⊆ V } is
open.

Nb. We can define theC-Isbell topologyon the set of continuous mapsX → Y as the
usual Isbell topology, replacing Scott openness by openness inOC X. It is easy to see
that the exponential topology is finer than theC-Isbell topology.

We now develop another application of Theorem 7.2. It is well-known that the
(full and faithful) functorΣ: DCPO → Top from the category of dcpos to topological
spaces, that endows a dcpo with its Scott topology and acts identically on maps, fails
to preserve finite products [5]. By [4, Theorem 4.7], we know that dcpos under the

13



Scott topology are compactly generated. Thus, if every compactly generated space
is aC-space thenΣ factors through the categoryTopC of C-spaces. This is the case,
for instance, ifC = E or C consists of all compact Hausdorff spaces or of all locally
compact spaces.

7.9 THEOREM. If C ⊆ E generates all compact Hausdorff spaces, then the functor
Σ: DCPO → TopC preserves finite products.

PROOF Let D andE be dcpos. By Theorem 7.2(1 ⇔ 2), it is enough to show that
W ⊆ D × E is Scott open iff (a) for eachd ∈ D the setVd

def= {e ∈ D | (d, e) ∈ W}
is Scott open, and (b) for each Scott open setV of Scott open sets ofE, the setUV

def=
{d ∈ D | Vd ∈ V} is Scott open. We omit the somewhat long, but routine verification
that this is the case.

�

Here is a another argument that side-steps Theorem 7.2 but uses the same ingredi-
ents as its proof:

PROOF Let D andE be two dcpos. WriteA(A,B) to denote the hom-set of a pair
A,B of objects of a categoryA, andA[A,B] to denote the exponentialBA if it exists.
Then, regardingS both as a (C-)space and a dcpo by an abuse of notation, we calculate,
using obvious canonical isomorphisms:

O(Σ D ×C Σ E) ∼= TopC(Σ D ×C Σ E, S)
∼= TopC(Σ D,TopC [Σ E, S])
∼= TopC(Σ D,Σ DCPO[E, S]) by [4, Corollary 5.16]
∼= DCPO(D,DCPO[E, S])
∼= DCPO(D ×DCPO E, S)
∼= OΣ(D ×DCPO E).

Moreover, the composition of all the canonical isomorphisms is easily seen to be the
identity, because the transpositions are calculated as in the category of sets, and hence
O(Σ D ×C Σ E) = OΣ(D ×DCPO E). Because both products are set-theoretical
products with appropriate structure, we conclude thatΣ D×C Σ E = Σ(D×DCPO E),
as required. �

As a further corollary we obtain the known fact that the restriction of the functor
Σ: DCPO → Top to continuous dcpos preserves finite products. The reason is that
continuous dcpos are core-compact in the Scott topology, and hence are in the classE ,
and thatX ×E Y = X × Y if one of the factors is inE . Moreover, this argument
establishes, more generally, the following fact, which is also known [5]:

7.10 COROLLARY. The restriction of the functorΣ: DCPO → Top to dcpos that are
core-compact in their Scott topology preserves finite products.
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8 To do

For the moment, this set of notes is still evolving, in slow motion, because I have many
other things to do. The following are notes for myself, so that I don’t forget what I
intend to include in the future.

Beyond topology and related work: (1) Locale theory. (2) Dubuc and Penon’s
notion of compactness for “sets” in a topos. (3) Connections with Taylor’s ASD. (4)
Bauer and Scott’s work on equilogical spaces. (5) Computational spaces. When this is
done, rename these notes to “Compactness in topology and beyond”, and write a more
substantial introduction.

Further work: Define a “calculus of open relations”, to make the synthetic proofs
more transparent, but yet avoiding the lambda-calculus. Any relation defined in this
calculus is automatically open. The terms of the calculus are built from continuous
maps and automatically denote continuous maps of their free variables. The formulas
are built from terms starting from open relations, using conjunction, disjunction, ex-
istential quantification over any space (warning: for locales in an arbitrary topos this
will not the case), universal quantification over compact spaces, equality for discrete
spaces, and apartness for Hausdorff spaces. Rewrite the sample synthetic proofs us-
ing this. The calculus has no implication or negation, because relations built in terms
of them are not open in general. (Keep the more cumbersome proofs to illustrate the
gain?) In any case, when this is done we can say precisely what a synthetic proof is: it
is one written in this calculus.

Further synthetic proofs: Include the synthetic proof from [2] that ifX is compact
and exponentiable (and non-empty!), then the maximum-value functionalRX → R is
continuous. Is that’s not much trouble, also consider (Riemann) integration. By the
way, is there a synthetic proof that any continuous map from a compact metric space
to any metric space is uniformly continuous? (There are restricted form of this in the
unpublished work of the author with Bauer, and in the published work of the author
with Ho Weng Kin.) Ah, about E. Hewitt too.

Further synthetic proofs: A continuousf : X → Y is proper iff it is closed and the
right adjointf∗ : OX → O Y of the frame mapf∗ : O Y → OX preserves directed
joins. Whether or notf is proper, observe thatf∗(U) = {y ∈ Y | f−1{y} ⊆ U}◦.
A continuous mapf : X → Y is proper iff the interior operator can be removed from
this formula. Proper maps reflect the way-below relation between arbitrary sets.

Consider stably (semi)open maps too?
Further synthetic proofs: We call a continuous mapf : X → Y is perfect it is stably

semiclosed. Here a continuous map is semiclosed if the lower set, in the specialization
order, of the image of any closed set is closed. Then a continuous mapf : X → Y is
perfect iff{f−1(upy) | y ∈ Y } is a continuously indexed family of compact sets, and
perfect maps reflect compact saturated sets. A continuous map is perfect ifff∗(U) =
{y ∈ Y | f−1{↑ y} ⊆ U}◦. The mapf is perfect iff it is semiclosed andf∗ preserves
directed joins. Cf. work of Hofmann and Lawson. Perfect maps reflect the way-below
relation betweenopensets, and, more generally between saturated sets.

Further work: Consider proper and perfect maps in the compactly generated case.
(And in the sequential case, etc.)
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