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1 Introduction

By definition, the intersection of finitely many open sets of any topological space is
open. Nachbin [6] observed that, more generally, the intersection of “compactly many”
open sets is open (see Section 2 for a precise formulation of this fact). Of course, this
is to be expected, because compact sets are intuitively understood as those sets that, in
some mysterious sense, behave as finite sets. Moreover, Nachbin applied this to obtain
elegant proofs of various facts concerning compact sets in topology and elsewhere.

A simple calculation (performed in Section 2) shows that Nachbin’s observation
amounts to the well known fact that if a spa&eis compact, then the projection map
7 x X — Z is closed for every spacg.

It is also well known that the converse holds: if a spAchas the property that the
projectionZ x X — Y is closed for every spacg, thenX is compact. We reformulate
this as a converse of Nachbin’s observation, and apply this to obtain further elegant
proofs of (old and new) theorems concerning compact sets.

We provide a new proof of (a reformulation of) the fact that a spde compact
if and only if the projection maf x X — Z is closed for every spacg. This is
generalized in various ways, to obtain results about proper maps, relative compactness,
and compactly generated spaces.



2 Some characterizations of the notion of compactness

2.1 DEFINITION. LetZ be a topological space add; | < € I} be a family of open
sets ofZ. If the index set/ comes endowed with a topology, such a family will be
calledcontinuously indexe wheneverz € V;, there are neighbourhoodsof = and

U of i such that € V, for all ¢t € T'andu € U. This amounts to saying that the graph
{(z,i) € Z x I | z € V;} of the family is open in the product topology.

2.2 AspaceX is compact if and only if the s}, _ V.. is open for any continuously
indexed family{V,, | z € X} of open sets of any space

That is, not only are the open sets of any space closed under the formation of compact
intersections, in addition to the postulated finite intersections, but also this characterizes
the notion of compactness. In the “synthetic” formulation of compactness developed
in [2, Chapter 7], we used continuous universal quantification functionals, for which
function spaces were required (see Section 3 below). A related formulation that avoids
the function-space machinery is the following:

2.3 AspaceX is compact if and only if for any spac¢eand any opensé¥’ C Zx X,
the set{z € Z | Vz € X.(z,x2) € W} is open.

This set can be written, more geometrically,{asc Z | {z} x X C W}, but the
given logical formulation emphasizes the connection with [2]. To prove 2.2 and 2.3,
first observe that any open sBf C Z x X gives rise to the continuously indexed
family {V,. | = € X} of open sets o/ defined byz € V, iff (z,2) € W, and that
this construction is a bijection from open setsfx X to continuouslyX -indexed
families of open sets af. Moreover,z € (|, .y V iff Vo € X.(z,2) € W. Next,

consider the closed sé&t = (Z x X) \ W and the projectiomr: Z x X — Z. Then
z € n(F) iff 3z € X.(z,2) € F. By the De Morgan law for existential and universal

quantifiers Z \ n(F) = {z € Z | Vz € X.(z,2) € W}. It follows that:

2.4 LEMMA. The following are equivalent for spac&sand Z.
1. The open sets ¢f are closed under continuousk-indexed intersections.
2. Foranyopensdll C Z x X, these{z € Z | Vz € X.(z,2) € W} is open.
3. The projectionZ x X — Z is a closed map.

This concludes the proof of 2.2 and 2.3, because it is well known that compactness
of X is equivalent to closedness of the projectiornk X — Z for every Z. A self-
contained proof of a generalization of 2.3, which doesn’t rely on previous knowledge
of the closed-projection characterization of compactness, will be given in Section 4.



3 A further characterization

We apply the formulation of compactness given by 2.3 to derive the “synthetic” formu-
lation based on function spaces [2, Chapter 7]. No previous knowledge on function-
space topologies is required.

3.1 DEFINITION. For given space§ and X, we denote bysX the set of continuous
mapsX — S endowed with a topology such tRat

1. the evaluation map: SX x X — S defined bye(f, ) = f(x) is continuous,

2. for any spaceZ, if f: Z x X — S is continuous then so is its exponential
transposef : Z — SX defined byf(z) = (z — f(z,7)).

Such an exponential topology doesn't always exist, but when it does it is easily seen
to be unique. Criteria for existence and explicit constructions can be found in e.g. [3]
or [2, Chapter 8], or in the extensive set of references contained therein, but they are
not necessary for our purposes.

3.2 DEFINITION. LetS be the Sierpinski space with an isolated painftrue) and a
limit point L (false). That is, the open sets &e{ T} and{_L, T}, but not{_L}.

Then a map: X — S is continuous iffp=(T) is open, and a séf C X is open

iff its characteristic magy: X — S is continuous. Previous proofs of the following
theorem were based on the fact that if the exponefiiadxists, then its topology is the
Scott topology. The present proof doesn'’t require this knowlegde, relying only on 2.3
and the universal property of exponentials given by Definition 3.1.

3.3 Ifthe exponentia§™ exists, then the following are equivalent:
1. X is compact.

2. The universal-quantification functional: S* — S defined by
Ap)=T <= Ve e Xplz)=T

is continuous.

PROOF ({}): Because the evaluation map S*¥ x X — S is continuous, the set
W = e~1(T)is open, and henclp € S¥ | Vz € X.(p,z) € W} = A~(T) is open
by compactness oX’, and therefored is continuous.

(1): Let Z be any space and’ C Z x X be an open set. Because the transpose
w: Z — SX of yw: Z x X — Sis continuous, so it o w: Z — S, and hence
V = (Aow) X(T)isopen. Butz € V iff A(w(z)) = Tiff Vo € Xw(z)(z) =T
iff Vo € X.(z,2) € W. This shows thafz € Z | Vo € X.(z,2) € W} is open, and
hence thafX is compact. O

1Because the category of continuous maps of topological spaces is well pointed, this coincides with the
categorical notion of exponential.



4 Generalization of Section 2

A proof that compactness df implies closedness of the projectighx X — Z for
every spaceZ, which amounts to the implication 2:3(), is relatively easy. We now
formulate and prove a generalization of this implication for families of compact subsets
of the spaceX.

4.1 DEFINITION. We say that a family{@Q, | y € Y’} of compact subsets of is
continuously indexetdby a topological spac¥ if for every neighbourhood’ of Q,,,
there is a neighbourhodfl of y such thatQ), C U for all t € T. This amounts to
saying thatthe sty € Y | Q, C U} is open for every open sét C X.

The implication 2.3&) is a special case of the following, considering the spaedth
just one pointy and the trivial familyQ, = X.

4.2 LEMMA. Let{Q, | y € Y} be a continuously indexed family of compact sets of a
spaceX, let Z be any space, and’ C Z x X be an open set. Then the set

{(z,y) € Z XY | Vapeq, -(2,7) € W}
is open.

Equivalently,
Vydg{ZGZHZ}XQyQW}

is a continuously indexed family of open setshf

PROOF  To show that the set/ = {(z,y) € Z x Y | {2} x Q, C W} is open,
we construct, for any paiz,y) € M, open setd” andT with (z,y) € V x T C M.
So assume thafz} x Q, € W. For anyz € Q,, we have tha(z,z) € W and
hence there are open séfs andV,, with (z,z) € V, x U, C W by definition of the
product topology. The®), C [J{U, | = € Q,}, and, by compactness &f,, there is
a finite setl C Q,, such that already),, C |J{U; | i € I}. LetV = (Nicr Vi- Then
V is an open neighbourhood ef By hypothesis, there is an open neighbourh@od
of y such thatQ; C (J{U; | i € I} forall¢t € T. To show thatV x T' C M,
let (v,t) € V x T. For anyz € @, there isi € I such thatz € U;, and hence
(v,) € V x U; CV; x Uy € W, which shows thafv} x Q; € U,V xU; C W,
and therefore tha,t) € M, as required. O

That closedness of the projecticghx X — Z for every spaceZ implies com-
pactness o', which amounts to the implication 2:3Y), is less trivial. Typical proofs
apply the characterization of compactness via cluster points of filters (see e.g. the proof
of [1, Lemma 10.2.1, page 101]). We offer a proof of a slight generalization o£2.3(
thatis closely related to, and inspired by those of [3, Lemma 4.4] and [2, Theorem 9.5].

2This is equivalent to continuity of the map — Qy when the collection of compact sets is endowed
with the upper Vietoris topology. For a family;; of open sets ofZ, however, there isn’'t a topology on the
collection of open sets df such that continuity of the family is equivalent to continuity of the map> V5,
unlessZ is an exponentiable space — see e.g. [3, Corollary 4.6].



This argument will be reused later to prove a more general fact about relative compact-
ness (Section 6).

Recall that a collectio@ of open sets is called directed if for any finite setC C
there isU € C with | JS C U. Any collection of open sets can be made directed by
adding the finite unions of its members. Hence a$& compact if and only if every
directed open cover @ has a member that covefs

4.3 LetQ@ be asubset of a spacé. If for every space’ and any opensél’ C Zx X,
the set{z € Z | {z} x Q € W} is open, ther® is compact.
PROOF LetC be a directed open cover Gf.

We first construct a spacg from X and(C: its points are the open sets &f, and
V C Zisopeniff 1)U € V andU C U’ € Z together implyU’ € V, and (2) if
UC € V thenU € V for someU € C. Such open sets are readily seen to form a
topology?, using the fact that is directed, and it/ is an open subset of a membeiCof
thentU = {U’ € Z | U C U'} is clearly open.

Next, we takelV = {(U,z) € Z x X | = € U}. To show thati¥’ is open, let
(U, z) € W and consider two cases. (t)e |JC: Thenz € U’ for someU’ € C with
x e U',andhencgU,z) € 1(UNU)Yx (UNU") CW. 2z ¢ JC: ThenU Z |JC
and hencd U isopen, anqU,z) € TU x U C W.

Finally, by the hypothesis, the st = {U € Z | {U} x Q C W} is open, and
clearlyU € V iff @ C U. Hencel JC € V and so some member 6fis in V, that is,
covers@, by construction of the topology &, as required. O

For future reference, we summarize part of the above development as follows:
4.4 LEMMA. The following are equivalent for any subggbf any topological spac .
1. Q is compact.

2. For every space, the sef{z € Z | Vq € Q.(z,q) € W} is open whenever the
setl C Z x X is open.

3. For every space, the set{z € Z | {z} x Q@ C W} is open whenever the set
W C Z x X is open.

5 Sample “synthetic” proofs of old theorems

We redevelop the synthetic proofs of [2, Chapter 9] almost literally, but without invok-
ing the function-space machinery or the lambda-calculus.

5.1 If X is Hausdorff and) C X is compact, theid) is closed inX.

PROOF BecauseX is Hausdorff, the complemeft’ of the diagonal is open. Hence
X\Q={zreX |VgeQu#q}={recX|Vqge Q.(x,q) € W} is open by
Lemma 4.4, and s@ is closed. O

3This is like the Scott topology, but defined with respect to one particular directed set, rather than all
directed sets. One cannot use the Scott topology for this proof, as, in general, it doesn't give rise to openness
of the seti? constructed in the proof — see e.g. [3, Corollary 4.6].



5.2 If X is compact and” C X is closed therf’ is compact.

PROOF We use Lemma 4.4. LeX be any space and’ C Z x X be open. We
have to show thatV = {z € Z | Va € F.(z,z) € W} is open. Butz € V iff
Ve € Xax € F = (z,x2) € Wiff Ve € Xx ¢ FV (z,2) € W. Hence
V={z€Z|VereX(z,2) e W}whereW = (Z x (X\F))UW,andV is open
by compactness oX, openness off’’ and 2.3&). O

5.3 If f: X — Y is continuous and the s€ C X is compact, then so i§(Q).
PrROOF For any spaceZ and any open sé/ C Z x Y, we have thafz € Z |
Yy € f(Q).(z,y) € W} ={z € Z | Vx € Q.(2, f(z)) € W}, which is open by
compactness of), because the sét’ defined by(z,z) € W' iff (2, f(z)) € Wis
open by continuity off. O

5.4 If X andY are compact spaces then sa¥sx Y.

PROOF We show thaty = {z € Z | ¥(z,y) € X x Y.(z,2,y) € W} is open
for any spaceZ and any open sél’ C Z x X x Y. By compactness df’, the set
W' = {(2,2) € Z x X | Vy € Y.(2,2,y) € W} is open, and, by compactnessXf

these{z € Z | Vo € X.(z,2) € W'} = V is open, as required. O

Although we don’t need the function-space machinery to develop the core of topol-
ogy, we still can use the function-space-free synthetic approach to prove theorems
about function spaces, as we have done in Section 3. Moreover, the abstract defini-
tion of function space as an exponential again suffices.

5.5 If Y is Hausdorff, then so is the exponenfial if it exists.
PROOF The codiagonal ot X is {(f,g) € YX x Y | 3z € X.f(x) # g(z)} =
Usex{(f,9) € YX x YX | f(z) # g(x)}, which is a union of open sets, because
W C YX x YX defined by(f, g) € Wiff f(x) # g(z) is open, using openness of the
codiagonal oft” and continuity of the evaluation mapX x X — Y. O

For the proof of the following dual proposition, recall that a space is discrete iff its
diagonal is open.

5.6 If X is compact and” is discrete, then the exponentil is discrete if it exists.
PROOF The diagonal ofY X is {(f,g) € YX x YX | V2 € X.f(z) = g(z)},
which is open by compactness &f, because the sét C YX x YX x X defined
by (f,g,z) € Wiff f(x) = g(x) is open, using openness of the diagonal’oénd
continuity of the evaluation map. O

As discussed above, these last two propositions don't require an intrinsic descrip-
tion of the topology of X . A partial description is given by the following:

5.7 If the exponentiat’ X exists, and if) C X is compact and’ C Y is open, then

the setV (Q, V) = {f e YX | f(Q) C V'} is open.

PROOF f € N(Q,V)iff V¢ € Q.f(¢q) € V. The result then follows from the fact
thatW C YX x X defined by(f,z) € W iff f(x) € V is open, using continuity of
the evaluation map. O



Recall that a continuous maf X — Y is called proper if the product map
dyxf:ZxX—>2ZxY
is closed for every spacg, whereidz: Z — Z is the identity map [1].
5.8 The following are equivalent for any continuous mapX — Y.
1. fis proper.
2. For every space and every open sév C Z x X, the set
{(zy) € ZxY [ {2} x fTHyy W}

is open.

w

. fis closed and the sgt~!(Q) is compact for every compact $gtC Y.

N

. fis closed and the sgt~!{y} is compact for every point € Y.

)]

Af Yy} | y € Y} is a continuously indexed family of compact set& of

We first refomulate closedness in terms of open sets. By taking complements, a con-
tinuous mapy: A — B is closed iff for every open séf C A, the setB \ g(A\ U)

is open. But an easy calculation shows that this s¢bis B | g~'{b} C U}. This
proves:

5.9 LEMMA. A continuous mapg: A — B is closed if and only if for every open set
UC A, theset{be B|g~'{b} C U} is open.

ProoF of5.8.

(1) & (2): Calculate thatidz x f)~*{(z,y)} = {2} x f~'{y} and then apply
Lemmab5.9ty =idyz x f.

(1,2) = (3): Considering the case in whicf is the one-point space, we see that
any proper map is closed. To show thfat!(Q) is compact, letZ be any space and
W C Z x X be an open set. Then the et= {(z,y) | {z} x f~'{y} € W}is
open by hypothesis, and hence theBet= {z € Z | {z} x Q C T} is open by
Lemma 4.4. But € U iff (z,y) € Tforally € Q, iff {z} x f~{y} € W for all
y € Q,iff {z} x f71(Q) C W. BecauseZ andW are arbitrary, a second application
of Lemma 4.4 shows that=1(Q) is compact, as required.

(3) = (4): Singletons are compact.

(4) = (5): By Lemma 5.9 applied tg = f,theset{y € Y | f~{y} C U}is
open for every € Y and every open séf C X.

(5) = (2): This follows directly from Lemma 4.2. O



The above characterizations (3) and (4) of propriety are of course well known. The
development of synthetic proofs was left as an exercise in [2]. Characterization (2) is
clearly just a reformulation of the definition using the language of open sets. Formula-
tion (5) seems to be new.

6 Relative compactness

For some topological questions regarding local compactness and function spaces, it is
fruitful to consider the domain-theoretic way-below relation on open sets [5]. Again
in a context pertaining to function spaces, Esbéatchwson and Simpson [4] found it
profitable to generalize this to arbitrary subsets of topological spaces.

For subsets andT of a topological spac&’, we define

S<«T <= everycoverofl by open sets ok
has a finite subcollection that coves's

In this case one says thatis way belowT, or compact relativeto 7. Then it is
immediate that a set is compact iff it is compact relative to itself. We also define

SeT +— ScCT°.
The following was formulated as [4, Lemma 4.2]:

6.1 LetX andY be topological spaces.
1. If F <« X is closed, thert" is compact.
2. If X is Hausdorff andS < T holds inX, thenS C T.
3. If f: X — Y is continuous and < T'in X, thenf(S) < f(T) holds inY'.
4. IfS<TinXandA< BinY,thenS x A< T x BholdsinX x Y.
5. fW CY x X isopenandS « T holds inX, then

{yeY [{ypxTCWle{yeY [{y} xSCW}

Assertion (1) generalizes the fact that a closed subset of a compact space is com-
pact, (2) the statement that a compact subset of a Hausdorff space is closed, (3) the fact
that continuous maps preserve compactness, and (4) the Tychonoff theorem in the finite
case. In this section we prove (5) and a converse, generalizing 2.3 and the development
of Section 4, and use this to derive (1)—(4), generalizing the development of Section 5.



6.2 THEOREM. The following are equivalent for any two subsStandT of a topo-
logical spaceX.

1. S«T.

2. For every space and every open sét C Z x X,

{zeZ|{Zz}xTCW}e{zeZ|{z}xSCW}

3. For every spac¢, everyz € Z and every open sét’ C Z x X,

{z} xT CW = V x5 CW for some neighbourhooH of z.

4. Foreveryspace andall M, N C Z x X,

MeN = {z€Z|{s}xTCM}e{zeZ|{z} xS CN}

PROOF (2) < (3): By definition of interior.(2) < (4): Considerl’ = N° in one
direction andM = N = W in the other.

(1) = (3): Assume that{z} x T" C W. Then for anyt € T, we have that
(z,t) € W and hence there are open s&isand V; with (z,t) € V;, x Uy C W.
Becausdl’ C |J,. U: andS < T, there is a finite sef C T" such thatS C J,; Us.

ThenV = (icr Viisopenand € V. To show thal” x S C W, let(v,s) € V x S.
Becauses € S C | J,; Ui, there isj € I such thats € U;, and becaus® = (,.; Vi
we have that € V;. Hence(v, s) € V; x U; C W, as required.

(3) = (1). To show thatS < T, letC be a directed open cover @f. We have
to conclude that C U for someU € C. We first construct a space from X andC,
and an open sél/ C Z x X as in the proof of 4.3. Becauge C | JC, we have that
{UC} x T C W. Hence, by the hypothesi¥; x S C W for some neighbourhood
V of |JC, which may be assumed to be open. By construction of the topology of
we have tha € V for someU € C. To show thatS C U, concluding the proof, let
s € S.Then(U,s) e V x S C W, and hence € U, as required. O

Notice that 2.3 follows directly from Theorem §12< 2), because a set is open iff
it is contained in its interior. Observe also that the implicatibh=- (3) amounts to
saying that if the relatioky} x 7' C W holds, and if we maké&" significantly smaller
by passing to a set way below, then we can m@gKesignificantly bigger by passing to
a whole neighbourhood so that the relation will still hold. We now apply Theorem 6.2
to generalize some of the proofs of Section 5.

6.3 If X is Hausdorff andS < T, thenS C T.

PROOF Because the complemelit C X x X of the diagonal is open a¥ is
Hausdorff, Theorem 6(2 = 2) shows thatX \ 7' = {z € X | {z} x T C W} &
{reX |{z} xSCW}=X\S5,and henc& C T. O



6.4 If Fisclosed inX andF' <« X, thenF' is compact.
PROOF LetZ be any space arid” C Z x X be open. Thei’ = (Zx (X\F))uW

is also open, and Theorem 62= 1) givesM = {z € Z | {z} x X CW'} e N =

{z € Z | {2} x F C W’}. But one readily checks that/ and N are equal to
{z € Z |Vz € F.(z,x) € W}, and hence, being contained in its own interior, this set
is open. Because the spafeand the open sé¥ C Z x X are arbitrary, the desired

result follows from Lemma 4.4. O

6.5 If f: X — Y is continuous and <« 7' in X, thenf(S) <« f(T') holds inY".
PROOF LetZ be aspacdly C Z x Y be open, and assume tHat} x f(T') C W.
ThenW’ = (idy x )~ (W) = {(z,2) € Z x X | (2, f(x)) € W} is also open by
continuity of f, and{z} x ' C W’. By Theorem 6.21 = 3), there is a neighbourhood
V of zwith V x § C W’. HenceV x f(S) C W. Because the spacg, the open
setW C Z x Y and the point € Z are arbitrary, Theorem 62 = 1) shows that
f(S) < f(T), as required. O

6.6 fS<TinXandA<« BinY,thenS x A< T x BholdsinX xY.

PROOF LetZbeaspaceandldt/, N CY x X x Y with M € N. Then, by two
successive applications of Theorem(@.2> 4), we first have that

M' = {(z,z0) € Z x X | {(2,2)} x BC M}
eN' = {(z,2) e Zx X |{(z,2)} x AC N}

andthenthal/” = {z e Z | {z} xTC M'} e N" = {ze Z| {2} xS C N'}.
But one readily checks thdtl” = {z € Z | {z} x T x B C M} andN" = {z €
Z | {z} x S x A C N}. Because the spadéand the setd/, N CY x X x Y are
arbitrary, the result follows from Theorem 64£2=- 1). O

7 Compactly generated spaces

In this section we assume familiarity with the notions and results developed in [4] and
with domain theory [5].

Let £ be the class of all spaces that are exponentiable in the category of topological
spaces, and C & be any productive class of spaces.CItonsists of the compact
Hausdorff spaces, then tlfegenerated spaces (@rspaces for short) are known as the
compactly generated spaces

The categorical product in the category(bpaces is given by the-coreflection
of the topological productX x¢Y = C(X x Y). Recall that the-coreflection
CX of a topological spaceX is obtained by keeping the same points and suitably
refining the given topology of. By [4, Theorem 5.4], we know thaX x. Y =
X x¢ Y for all C-spacesX andY. That is, theC-product doesn’t depend ah even
though theC-coreflection does. We were thus led to ask whether there is an instrinsic
characterization of th€-product [4, Problem 9.3]. We now develop and answer to

10



this question, formulated as Theorem 7.2 below. We know that the Sierpinski space
is aC-generated space if and only if the generating claswxludes a space in which

not every open set is closed [4, Lemma 4.6(ii)]. In particular, the Sierpinski space is
£-generated.

7.1 LEMMA. Assume that the Sierpinski spaceCigjenerated. For aC-generated
spaceX, let
Oc X

be the lattice of open sets &f endowed with the topology that makes the bijection
U xu: Oc X — S¥X into a homeomorphism, where the exponential is calculated
in the categoryl'op, of C-spaces.

1. The topology o®¢ X is finer than the Scott topology.

2. The topology 0. X coincides with the Scott topologydfgenerates all com-
pact Hausdorff spaces.

3. AsetlV CY x¢ X is open if and only if its transpose : Y — O¢ X defined
byw(y) = {x € X | (y,x) € W} is continuous.

4. These{(U,z) € Oc X x¢ X | € U} is open in the-product.

PrRoOOF (1): [4, Theorem 5.15]. (2): [4, Corollary 5.16]. (3): By definition of
exponential transpose. (4): Its transpose is the identit9of . O

If C doesn't generate all compact Hausdorff spaces, the second item doesn’t neces-
sarily hold. For example, if is a singleton consisting of the one-point compactifica-
tion of the discrete natural numbers (known the “generic convergent sequence”), then
a space i€-generated if and only if it is sequential, and for a sequential spaoes
have that/ C O¢ X is open if and only if it is upwards closed and inaccessible by
unions of countable directed setsXfis a Lindebf space, as is the caseXfis a QCB
space, this does coincide with the Scott topology, but, in general, this is strictly finer
than the Scott topology. The following holds without any assumptio@ other than
that it is contained i€ and that it is productive.

7.2 THEOREM. If X andY are(C-spaces, then the following are equivalent for any set
WCY x X.

1. WisopeninY x¢ X.

2. (a) Foreachy € Y, theset/, = {z € X | (y,x) € W} is open, and

def

(b) for each Scott open set C O X, thesetVyy = {y € Y | U, € U} is
open.

3. (a) Foreach: € X,thesetV, = {y € Y | (y,z) € W} is open, and

def

(b) for each Scott openset C OV, thesetly, = {x € X | V, € V}is
open.

11



PROOF We prove(l) < (2). A proof of (1) < (3) is obtained via the canonical
homeomorphisnX x. Y 2Y x¢ X.

(1) = (2): As we have already discussedJif is open in theC-product, then it is
also open in the-product. Because the Sierpinski sp&ds an&-space, its transpose
w:Y — Og X defined in the previous lemma is continuous. Then one readily checks
thatw(y) = U, andw™=! () = Vi, which shows thal/, andV;, are open, as required.

(2) = (1): By the hypothesis, the map: Y — O¢ X given byw = U, is well
defined and continuous. But one readily checks that this is the transpdgealefined
in Lemma 7.1, and hend#& is open in theg-product, and therefore in th&product,
as required. O

We now return to the subject of compactness. We henceforth assume that the Sier-
pinski space i€-generated.

7.3 THEOREM. The following are equivalent for any subsgif aC-spaceX.
1. These{U € O¢ X | Q C U} is open.

2. For everyC-spaceY’, and every open sé’ C Y x¢ X, the set
{yeY [{ytxQc W}
is open.
3. The universal-quantification functiondl, : S* — S defined by
Aglp) =T <= Ve e Qpx)=T

is continuous, where the exponential is calculate@ip,. .

PROOF (1) = (2): One readily checks thatthe sgt € Y | {y} x @ C W}isthe
same ad/, in Theorem 7.2(2) for the choi¢é = {U € Oc X | Q C U}.
(2) = (3) Because the evaluation map S* x. X — S is continuous, the set
W = ¢~1(T)is open, and hence the dete S¥ | {p} xQ C W} ={pe S¥ |V ¢
Q.p(x) = T} = A=(T) is open by the hypothesis, and therefdlg is continuous.
(3) = (1): Theset{U € O¢ X | Q C U} is the inverse image of T} for the
compositedg o (U +— xp): Oc X —S¥ — S. O

7.4 DEFINITION. When these equivalent conditions hold, we say ¢h&C-compact

For example, it follows from the above observations that if the alassa singleton
consisting of the generic convergent sequence, titegenerated space (i.e. a sequen-

tial space) i€-compact if and only if every countable open cover has a finite subcover.
However, for compactly generated spaces, the same notion of compactness is obtained,
as shown by the next proposition. We first formulate an immediate consequence of the
above theorem.

7.5 COROLLARY. AC-spaceX isC-compactif and only if the projectiorix X — Y
is closed for everg-spacey .

PrROOF Use the De Morgan laws as in Section 2. O

12



7.6 PROPOSITION Any compact set i8-compact. If the clasS generates all compact
Hausdorff spaces, the converse holds.

PROOF If ) is compact subset of @-spaceX, then{U € OX | Q C U} is
Scott open by definition of the Scott topology, and hence opériX by Lemma 7.1.
Conversely, ifQ) is C-compact and the hypothesis holds, tighe O X | Q C U} is
Scott open by Lemma 7.1, and hence compact by definition of the Scott topology.

Thus, even though” x¢ X has a greater (and somewhat mysterious) supply of
open sets thal™ x X, it is still the case that i) is compact then for every open set
W CY x¢ X, theset{y €Y | {y} x @ C W}isopen.

7.7 DEFINITION. We say that &-spaceX is C-Hausdorffif its diagonal is closed in
X x¢ X, and that it iSC-discreteif its diagonal is open inX x¢ X.

If a C-space is Hausdorff (resp. discrete) thendt-slausdorff (resp. -discrete), because

the C-product has a topology finer than the topological product. There muét be

Hausdorff spaces which are not Hausdorff, but | doubt that this holds for discreteness.
We have developed enough ideas and techniques to routinely develop proofs of the

following, and hence we omit them:

7.8 FROPOSITION LetX andY beC-spaces.

1. If X andY areC-compact, then so i¥ x. Y.

This potentially fails if one replac&scompactness by topological compactness,
because thé-product has a topology finner than the topological product.

2. If f: X — Y is continuous and) C X is C-compact, then so i$(Q).

3. If X is C-Hausdorff and) C X is C-compact, ther) is closed.

Notice that this is stronger than the statement that a compact subspace of a Haus-
dorff C-space is closed, as it has weaker hypotheses.

. If F C X is closed andX is C-compact, then so i8'".
. If Y is C-Hausdorff, then so is the exponentiaf*.

. If X is C-compact and is C-discrete, then the exponenti&l is C-discrete.

N o o b

. IfQ C X isC-compact and/ C Y is open, then{f € YX | f(Q) C V}is
open.

Nb. We can define thé-Isbell topologyon the set of continuous maps — Y as the
usual Isbell topology, replacing Scott openness by opennd8g iK. It is easy to see
that the exponential topology is finer than thédsbell topology.

We now develop another application of Theorem 7.2. It is well-known that the
(full and faithful) functory: DCPO — Top from the category of dcpos to topological
spaces, that endows a dcpo with its Scott topology and acts identically on maps, fails
to preserve finite products [5]. By [4, Theorem 4.7], we know that dcpos under the
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Scott topology are compactly generated. Thus, if every compactly generated space
is aC-space therk factors through the categofjop, of C-spaces. This is the case,

for instance, ifC = £ or C consists of all compact Hausdorff spaces or of all locally
compact spaces.

7.9 THEOREM. If C C & generates all compact Hausdorff spaces, then the functor
¥: DCPO — Top, preserves finite products.

PROOF Let D andFE be dcpos. By Theorem 7.2 < 2), it is enough to show that
W C D x E is Scott open iff (a) for eacti ¢ D the setV; = {e € D | (d,e) € W}

def

is Scott open, and (b) for each Scott openiseff Scott open sets df, the set/,, =
{d € D | V4 € V}is Scott open. We omit the somewhat long, but routine verification
that this is the case.

O

Here is a another argument that side-steps Theorem 7.2 but uses the same ingredi-
ents as its proof:

PrRoOF Let D andE be two dcpos. Writed(A, B) to denote the hom-set of a pair
A, B of objects of a categoryi, and.A[A, B] to denote the exponenti@l“ if it exists.
Then, regardin@ both as a(-)space and a dcpo by an abuse of notation, we calculate,
using obvious canonical isomorphisms:

1%

O(XD xcXE) Tope (2D x¢ X E,S)

Tope (X D, Top.[X E,S))

Top (X D, DCPOIE,S]) by [4, Corollary 5.16]
DCPO(D,DCPOIE,S])

DCPO(D xpcpo E,S)

OX(D xpcpo E).

1R 1 IR

174

Moreover, the composition of all the canonical isomorphisms is easily seen to be the
identity, because the transpositions are calculated as in the category of sets, and hence
O(ED x¢ X E) = OX(D xpcpo E). Because both products are set-theoretical
products with appropriate structure, we conclude bl x¢ ¥ F = 3(D Xpcpo E),

as required. O

As a further corollary we obtain the known fact that the restriction of the functor
3: DCPO — Top to continuous dcpos preserves finite products. The reason is that
continuous dcpos are core-compact in the Scott topology, and hence are in thg class
and thatX x¢ Y = X x Y if one of the factors is ir€. Moreover, this argument
establishes, more generally, the following fact, which is also known [5]:

7.10 COROLLARY. The restriction of the functor: DCPO — Top to dcpos that are
core-compact in their Scott topology preserves finite products.
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8 Todo

For the moment, this set of notes is still evolving, in slow motion, because | have many
other things to do. The following are notes for myself, so that | don’t forget what |
intend to include in the future.

Beyond topology and related work: (1) Locale theory. (2) Dubuc and Penon’s
notion of compactness for “sets” in a topos. (3) Connections with Taylor's ASD. (4)
Bauer and Scott’s work on equilogical spaces. (5) Computational spaces. When this is
done, rename these notes to “Compactness in topology and beyond”, and write a more
substantial introduction.

Further work: Define a “calculus of open relations”, to make the synthetic proofs
more transparent, but yet avoiding the lambda-calculus. Any relation defined in this
calculus is automatically open. The terms of the calculus are built from continuous
maps and automatically denote continuous maps of their free variables. The formulas
are built from terms starting from open relations, using conjunction, disjunction, ex-
istential quantification over any space (warning: for locales in an arbitrary topos this
will not the case), universal quantification over compact spaces, equality for discrete
spaces, and apartness for Hausdorff spaces. Rewrite the sample synthetic proofs us-
ing this. The calculus has no implication or negation, because relations built in terms
of them are not open in general. (Keep the more cumbersome proofs to illustrate the
gain?) In any case, when this is done we can say precisely what a synthetic proof is: it
is one written in this calculus.

Further synthetic proofs: Include the synthetic proof from [2] that ifs compact
and exponentiable (and non-empty!), then the maximum-value functiohal R is
continuous. Is that's not much trouble, also consider (Riemann) integration. By the
way, is there a synthetic proof that any continuous map from a compact metric space
to any metric space is uniformly continuous? (There are restricted form of this in the
unpublished work of the author with Bauer, and in the published work of the author
with Ho Weng Kin.) Ah, about E. Hewitt too.

Further synthetic proofs: A continuoys X — Y is proper iff it is closed and the
right adjointf,.: O X — OY of the frame magf*: OY — O X preserves directed
joins. Whether or nof is proper, observe that.(U) = {y € Y | f~{y} C U}°.

A continuous mag': X — Y is proper iff the interior operator can be removed from
this formula. Proper maps reflect the way-below relation between arbitrary sets.

Consider stably (semi)open maps too?

Further synthetic proofs: We call a continuous nfapX — Y is perfectitis stably
semiclosed. Here a continuous map is semiclosed if the lower set, in the specialization
order, of the image of any closed set is closed. Then a continuoug'map— Y is
perfect iff { f ! (upy) | y € Y} is a continuously indexed family of compact sets, and
perfect maps reflect compact saturated sets. A continuous map is perfg¢Liff =
{yeY | f~Y{1y} C U}°. The mapf is perfect iff it is semiclosed anfl. preserves
directed joins. Cf. work of Hofmann and Lawson. Perfect maps reflect the way-below
relation betweempensets, and, more generally between saturated sets.

Further work: Consider proper and perfect maps in the compactly generated case.
(And in the sequential case, etc.)
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