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Abstract. Given a continuous functional f : X → Y and y ∈ Y , we wish
to compute x ∈ X such that f(x) = y, if such an x exists. We show that
if x is unique and X and Y are subspaces of Kleene–Kreisel spaces of con-
tinuous functionals with X exhaustible, then x is computable uniformly
in f , y and the exhaustion functional ∀X : 2X → 2. We also establish a
version of the above for computational metric spaces X and Y , where
is X computationally complete and has an exhaustible set of Kleene–
Kreisel representatives. Examples of interest include functionals defined
on compact spaces X of analytic functions.
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1 Introduction

Given a continuous functional f : X → Y and y ∈ Y , we consider the equation
f(x) = y with the unknown x ∈ X. We show that if X and Y are subspaces
of Kleene–Kreisel spaces [1] with X exhaustible [2], the solution is computable
uniformly in f , y and the exhaustion functional ∀X : 2X → 2, provided there is a
unique solution (Section 3). Here exhaustibility plays the role of a computational
counter-part of the topological notion of compactness (Section 2). Moreover,
under the same assumptions for X and Y , it is uniformly semi-decidable whether
a solution x ∈ X fails to exist.

Recall that the Kleene–Kreisel spaces are obtained from the discrete space N
by iterating finite products and function spaces in a suitable cartesian closed
category (e.g. filter spaces, limit spaces, k-spaces, equilogical spaces or QCB
spaces). For computability background, see [1] or [2]. We exploit the fact that,
by cartesian closedness, computable functionals are closed under λ-definability.

The computation of unique solutions of equations of the form g(x) = h(x)
with g, h : X → Y is easily reduced to the previous case, because there are
(abelian) computable group structures on the ground types that can be lifted
componentwise to product types and pointwise to function types, and hence
x ∈ X is a solution of such an equation iff it is a solution of the equation
f(x) = 0, where f(x) = h(x) − g(x). And, by cartesian closedness, the case in
which g and h computably depend on parameters, and in which the solution
computably depends on the same parameters, is covered. Moreover, because the
Kleene–Kreisel spaces are closed under finite products and countable powers,



this includes the solution of finite and countably infinite systems of equations
with functionals of finitely many or countably infinitely many variables.

We also consider a generalization to computational metric spaces that ap-
plies to computational analysis, where f can be a functional and x a function
(Section 4). And we develop examples of sets of analytic functions that are ex-
haustible and can play the role of the space X (Section 5).

Organization. (2) Exhaustible subspaces of Kleene–Kreisel spaces. (3) Equa-
tions over Kleene–Kreisel spaces. (4) Equations over metric spaces. (5) Ex-
haustible spaces of analytic functions.

2 Exhaustible Subspaces of Kleene–Kreisel Spaces

In previous work we investigated exhaustible sets of total elements of effectively
given domains and their connections with Kleene–Kreisel spaces of continuous
functionals [2]. Here we work directly with exhaustible subspaces of Kleene–
Kreisel spaces, where in this section we translate notions and results for them
from that work. Denote by Y X the space of continuous functionals from X to Y .

Definition 2.1. Let 2 = {0, 1} be discrete.

1. A space K is called exhaustible if the universal quantification functional

∀K : 2K → 2

defined by ∀K(p) = 1 iff p(x) = 1 for all x ∈ K is computable.
2. It is called searchable if there is a computable selection functional

εK : 2K → K

such that for all p ∈ 2K , if there is x ∈ K with p(x) = 1 then p(εK(p)) = 1.
3. A set F ⊆ X is decidable if its characteristic map X → 2 is computable. ut

Equivalently, K is exhaustible iff the functional ∃K : 2K → 2 defined by
∃K(p) = 1 iff p(x) = 1 for some x ∈ K is computable. If K is searchable, then
it is exhaustible, because ∃K(p) = p(εK(p)). The empty space is exhaustible,
but not searchable, because there is no map 2∅ → ∅.

The following results are directly adapted to our setting from [2].

Lemma 2.1.

1. The Cantor space 2N is searchable.
2. Any exhaustible subspace of a Kleene–Kreisel space is compact, and more-

over, if it is non-empty, it is searchable, a computable retract, and a com-
putable image of the Cantor space.

3. Searchable spaces are closed under computable images, intersections with
decidable sets, and finite products.

4. A product of countably many searchable subspaces of a common Kleene–
Kreisel space is searchable uniformly in the sequence of quantifiers.

Thus, exhaustibility is a computational counter-part of the topological notion of
compactness, at least for subspaces of Kleene–Kreisel spaces.



3 Equations over Kleene–Kreisel Spaces

We emphasize that in this paper, including Section 4, the terminology uniform
is used in the sense of recursion theory, rather than metric topology.

Theorem 3.1. If f : X → Y is a continuous map of subspaces of Kleene–Kreisel
spaces with X exhaustible, and y ∈ Y , then, uniformly in ∀X , f , and y:

1. It is semi-decidable whether the equation f(x) = y fails to have a solution.
2. If f(x) = y has a unique solution x ∈ X, then it is computable.

Hence if f : X → Y is a computable bijection then it has a computable inverse,
uniformly in ∀X and f .

The conclusion is a computational counter-part of the topological theorem that
any continuous bijection from a compact Hausdorff space to a Hausdorff space
is a homeomorphism.

Remark 3.1. The uniqueness assumption in the second part is essential. In fact,
consider e.g. X = 2 (which is trivially exhaustible) and Y = NN. Then a map
f : X → Y amounts to two functions f0, f1 : N→ N. Hence computing a solution
to the above equation amounts to finding i ∈ 2 such that fi = y holds, that is,
fi(n) = y(n) for all n ∈ N. In other words, under the assumption that f0 = y
or f1 = y, we want to find i such that fi = y. If the only data supplied to the
desired algorithm are f0, f1, y, this is not possible, because no finite amount of
information about the data can determine that one particular disjunct holds.
When specialized to this example, the proof of the theorem relies on the addi-
tional information that only one of the disjuncts holds. ut

The following will be applied to semi-decide absence of solutions:

Lemma 3.1. Let X be an exhaustible subspace of a Kleene–Kreisel space and
Kn ⊆ X be a sequence of sets that are decidable uniformly in n and satisfy
Kn ⊇ Kn+1. Then, uniformly in the data:

emptiness of
⋂
nKn is semi-decidable.

Proof. Because X is compact by exhaustibility, Kn is also compact as it is closed.
Because X is Hausdorff,

⋂
nKn = ∅ iff there is n such that Kn = ∅. But

emptiness of this set is decidable uniformly in n by the algorithm ∀x ∈ X.x 6∈ Kn.
Hence a semi-decision procedure is given by ∃n.∀x ∈ X.x 6∈ Kn. ut

As a preparation for a lemma that will be applied to compute unique solu-
tions, notice that if a singleton {u} ⊆ NZ is exhaustible, then the function u is
computable, because u(z) = µm.∀v ∈ {u}.v(z) = m. Moreover, u is computable
uniformly in ∀{u}, in the sense that there is a computable functional

U : S → NZ with S = {φ ∈ 22NZ

| φ = ∀{v} for some v ∈ NZ},



such that u = U
(
∀{u}

)
, namely U(φ)(z) = µm.φ(λu.u(z) = m). Lemma 3.2

below generalizes this, using an argument from [2] that was originally used to
prove that non-empty exhaustible subsets of Kleene–Kreisel spaces are com-
putable images of the Cantor space and hence searchable. Here we find additional
applications and further useful generalizations.

Lemma 3.2. Let X be an exhaustible subspace of a Kleene–Kreisel space and
Kn ⊆ X be a sequence of sets that are exhaustible uniformly in n and satisfy
Kn ⊇ Kn+1. Then, uniformly in the data:

if
⋂
nKn is a singleton {x}, then x is computable.

Proof. By Lemma 2.1, X is a computable retract of its Kleene–Kreisel super-
space. Because any Kleene–Kreisel space is a computable retract of a Kleene–
Kreisel space of the form NZ , and because retractions compose, there are com-
putable maps s : X → NZ and r : NZ → X with r ◦ s = idX . It suffices to show
that the function u = s(x) ∈ NZ is computable, because x = r(u). The sets
Ln = s(Kn) ⊆ NZ , being computable images of exhaustible sets, are themselves
exhaustible. For any z ∈ Z, the set Uz = {v ∈ NZ | v(z) = u(z)} is clopen and⋂
n Ln = {u} ⊆ Uz. Because NZ is Hausdorff, because Ln ⊇ Ln+1, because each

Ln is compact and because Uz is open, there is n such that Ln ⊆ Uz. That is,
v ∈ Ln implies v(z) = u(z). Therefore, for every z ∈ Z there is n such that
v(z) = w(z) for all v, w ∈ Ln. Now, the map n(z) = µn.∀v, w ∈ Ln.v(z) = w(z)
is computable by the exhaustibility of Ln. But u ∈ Ln(z) for any z ∈ Z and
therefore u is computable by exhaustibility as u(z) = µm.∀v ∈ Ln(z).v(z) = m,
as required. ut

To build sets Kn suitable for applying these two lemmas, we use:

Lemma 3.3. For every computable retract of a Kleene–Kreisel space, there is a
family (=n) of equivalence relations that are decidable uniformly in n and satisfy

x = x′ ⇐⇒ ∀n. x =n x
′,

x =n+1 x
′ =⇒ x =n x

′.

Proof. Let X be a Kleene–Kreisel space and s : X → NZ and r : NZ → X be
computable maps with Z a Kleene–Kreisel space and r ◦s = idX . By the density
theorem, there is a computable dense sequence δn ∈ Z. Then the definition

x =n x
′ ⇐⇒ ∀i < n.s(x)(δi) = s(x′)(δi)

clearly produces an equivalence relation that is decidable uniformly in n and
satisfies x =n+1 x

′ =⇒ x =n x
′. Moreover, x = x′ iff s(x) = s(x′), because s is

injective, iff s(x)(δn) = s(x′)(δn) for every n, by density, iff x =n x
′ for every n,

by definition. ut

Proof (of Theorem 3.1). The set Kn = {x ∈ X | f(x) =n y}, being a decidable
subset of an exhaustible space, is exhaustible. Therefore the result follows from
Lemmas 3.1 and 3.2, because x ∈

⋂
nKn iff f(x) =n y for every n iff f(x) = y

by Lemma 3.3. ut



Algorithms 3.2. In summary, the algorithm for semi-deciding non-existence of
solutions is

∃n.∀x ∈ X.f(x) 6=n y,

and that for computing the solution x0 as a function of ∀X , f , and y is:

∀x ∈ Kn.p(x) = ∀x ∈ X.f(x) =n y =⇒ p(x),
∀v ∈ Ln.q(v) = ∀x ∈ Kn.q(s(x)),

n(z) = µn.∀v, w ∈ Ln.v(z) = w(z),
u(z) = µm.∀v ∈ Ln(z).v(z) = m,

x0 = r(u).

Here r : NZ → X is a computable retraction with section s : X → NZ , where Z
is a Kleene–Kreisel space, as constructed in the proof of Lemma 3.2. ut

Of course, even in the absence of uniqueness, approximate solutions with
precision n are trivially computable with the algorithm

εX(λx.f(x) =n y),

using the fact that non-empty exhaustible subsets of Kleene–Kreisel spaces are
searchable. But the above unique-solution algorithm uses the quantification func-
tional ∀X rather than the selection functional εX . In the next section we compute
solutions as limits of approximate solutions.

4 Equations over Metric Spaces

For the purposes of this and the following section, we can work with compu-
tational spaces in the sense of TTE [3] using Baire-space representations, or
equivalently, using partial equivalence relations on representatives living in ef-
fectively given domains [4]. Our development applies to both, and we can more
generally assume for the former that representatives form subspaces of arbitrary
Kleene–Kreisel spaces rather than just the Baire space NN. We first formulate the
main result of this section and then supply the missing notions in Definition 4.2:

Theorem 4.1. Let X and Y be computational metric spaces with X computa-
tionally complete and having an exhaustible Kleene–Kreisel representation.

If f : X → Y is continuous and y ∈ Y , then, uniformly in f , y and the
exhaustibility condition:
1. It is semi-decidable whether the equation f(x) = y fails to have a

solution.
2. If f(x) = y has a unique solution x ∈ X, then it is computable.

Hence any computable bijection f : X → Y has a computable inverse, uniformly
in f and the exhaustibility condition.



Given that exhaustibility is a computational counter-part of the topological no-
tion of compactness, and that compact metric spaces are complete, it is natural
to conjecture that, at least under suitable computational conditions, the as-
sumption of computational completeness in the above theorem is superfluous.
We leave this as an open question. In connection with this, notice that this the-
orem is analogous to a well-known result in constructive mathematics [5], with
the assumptions reformulated in our higher-type computational setting.

There is a technical difficulty in the proof of the theorem: at the intensional
level, where computations take place, solutions are unique only up to equivalence
of representatives. In order to overcome this, we work with pseudo-metric spaces
at the intensional level and with a notion of decidable closeness for them. Recall
that a pseudo-metric on a set X is a function d : X ×X → [0,∞) such that

d(x, x) = 0, d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z).

Then d is a metric if it additionally satisfies d(x, y) = 0 =⇒ x = y. If d is only
a pseudo-metric, then (∼) defined by

x ∼ y ⇐⇒ d(x, y) = 0

is an equivalence relation, referred to as pseudo-metric equivalence. A pseudo-
metric topology is Hausdorff iff it is T0 iff the pseudo-metric is a metric. More-
over, two points are equivalent iff they have the same neighbourhoods. Hence
any sequence has at most one limit up to equivalence.

A computational metric space is a computational pseudo-metric space in
which the pseudo-metric is actually a metric, and hence we formulate the fol-
lowing definitions in the generality of pseudo-metric spaces.

Definition 4.2. We work with any standard (admissible) representation of the
Hausdorff space [0,∞).

1. A computational pseudo-metric space is a computational space X endowed
with a computable pseudo-metric, denoted by d = dX : X ×X → [0,∞).

2. A fast Cauchy sequence in a computational pseudo-metric space X is a se-
quence xn ∈ X with d(xn, xn+1) < 2−n. The subspace of XN consisting of
fast Cauchy sequences is denoted by Cauchy(X).

3. A computational pseudo-metric space X is called computationally complete
if every sequence xn ∈ Cauchy(X) has a limit uniformly in xn.

4. A computational pseudo-metric space X has decidable closeness if there is
a family of relations ∼n on X that are decidable uniformly in n and satisfy:
(a) x ∼n y =⇒ d(x, y) < 2−n,
(b) x ∼ y =⇒ ∀n.x ∼n y.
(c) x ∼n+1 y =⇒ x ∼n y,
(d) x ∼n y ⇐⇒ y ∼n x,
(e) x ∼n+1 y ∼n+1 z =⇒ x ∼n z.
The last condition is a counter-part of the triangle inequality. It follows from
the first condition that if x ∼n y for every n, then x ∼ y. Write

[x] = {y ∈ X | x ∼ y}, [x]n = {y ∈ X | x ∼n y}.

Then the equivalence class [x] is the closed ball of radius 0 centered at x. ut



For instance, the spaces R and [0,∞) are computationally complete metric spaces
under the Euclidean metric, but don’t have decidable closeness.

Remark 4.1. In the above definition, we don’t require the representation topol-
ogy of X to agree with the pseudo-metric topology generated by open balls.
But notice that the metric topology is always coarser than the representation
topology, because, by continuity of the metric, open balls are open in the rep-
resentation topology. Hence the representation topology of any computational
metric space is Hausdorff. Moreover, if X has an exhaustible Kleene–Kreisel
space of representatives and the metric topology is compact, then both topolo-
gies agree, because no compact Hausdorff topology can be properly refined to
another compact Hausdorff topology. ut

We are ready to prove the theorem.

Lemma 4.1. For every computational metric space X there is a canonical com-
putable pseudo-metric d = dpXq on the representing space pXq such that:

1. The representation map ρ = ρX : pXq→ X is an isometry:

d(t, u) = d(ρ(t), ρ(u)).

In particular:
(a) t ∼ u ⇐⇒ d(t, u) = 0 ⇐⇒ ρ(t) = ρ(u).
(b) If f : X → Y is a computable map of metric spaces, then any represen-

tative pfq : pXq→ pY q preserves the relation (∼).
2. If X is computationally complete, then so is pXq.
3. The representing space pXq has decidable closeness.

Proof. Construct dpXq : pXq×pXq→ [0,∞) as the composition of a computable
representative pdXq : pXq × pXq → p[0,∞)q of dX : X ×X → [0,∞) with the
representation map ρ[0,∞) : p[0,∞)q→ [0,∞). A limit operator for pXq from a
limit operator for X is constructed in a similar manner. For given t, u ∈ pXq,
let qn be the n-th term of the sequence pdXq(t, u) ∈ p[0,∞)q ⊆ Cauchy(Q), and
define t ∼n u to mean that [−2−n, 2−n] ⊆ [qn − 2−n+1, qn + 2−n+1]. ut

Lemma 4.2. Let Z be a subspace of a Kleene–Kreisel space with complete com-
putational pseudo-metric structure and decidable closeness, and Kn ⊆ Z be a
sequence of sets that are exhaustible uniformly in n and satisfy Kn ⊇ Kn+1.
Then, uniformly in the data:

if
⋂
nKn is an equivalence class, then it has a computable member.

Proof. Let z ∈
⋂
nKn. For any m, we have

⋂
nKn = [z] ⊆ [z]m+1, and hence

there is n such that Kn ⊆ [z]m+1, because the sets Kn are compact, because
Kn ⊇ Kn+1, because Z is Hausdorff and because [z]m+1 is open. Hence for
every u ∈ Kn we have u ∼m+1 z, and so for all u, v ∈ Kn we have u ∼m v.
By the exhaustibility of Kn and the decidability of (∼n), the function n(m) =
µn.∀u, v ∈ Kn. u ∼m v is computable. By the searchability of Kn, there is a



computable sequence um ∈ Kn(m). Because n(m) ≤ n(m + 1), we have that
Kn(m) ⊇ Kn(m+1) and hence um ∼m um+1 and so d(um, um+1) < 2−m and um
is a Cauchy sequence. By completeness, um converges to a computable point u∞.
Because z ∈ Kn(m), we have um ∼m z for every m, and hence d(um, z) < 2−m.
And because d(u∞, um) < 2−m+1, the triangle inequality gives d(u∞, z) < 2−m+
2−m+1 for every m and hence d(u∞, z) = 0 and therefore u∞ ∈

⋂
nKn. ut

The proof of the following is essentially the same as that of Theorem 3.1, but
uses Lemma 4.2 rather than Lemma 3.2, and Lemma 4.1 instead of Lemma 3.3.

Lemma 4.3. Let Z and W be subspaces of Kleene–Kreisel spaces with compu-
tational pseudo-metric structure and decidable closeness, and assume that Z is
computationally complete and exhaustible.

If g : Z → W is a computable map that preserves pseudo-metric equiva-
lence and w ∈W is computable, then, uniformly in ∀Z , g, and w:
1. It is semi-decidable whether the equivalence g(z) ∼ w fails to have a

solution z ∈ Z.
2. If g(z) ∼ w has a unique solution z ∈ Z up to equivalence, then some

solution is computable.

Proof. The set Kn = {z ∈ Z | g(z) ∼n w}, being a decidable subset of an
exhaustible space, is exhaustible. Therefore the result follows from Lemmas 3.1
and 4.2, because z ∈

⋂
nKn iff g(z) ∼n w for every n iff g(z) = w. ut

Algorithm 4.3. The solution z = u∞ is then computed from ∀Z , g and w as
follows, where we have expanded ∀Kn

as a quantification over Z:

n(m) = µn.∀u, v ∈ Z. g(u) ∼n w ∧ g(v) ∼n w =⇒ u ∼m v,

u∞ = lim
m
εK(λz.g(z) ∼n(m) w).

Thus, although there are common ingredients with Theorem 3.1, the resulting
algorithm is different from 3.2, because it relies on the limit operator and ap-
proximate solutions. ut

But, for Theorem 4.1, approximate solutions are computable uniformly in pfq
and pyq only, as different approximate solutions are obtained for different rep-
resentatives of f and y:

Proof (of Theorem 4.1.). Let f : X → Y and y ∈ Y be computable. Now apply
Lemma 4.3 with Z = pXq, W = pY q, g = pfq, w = pyq, using Lemma 4.1 to
fulfil the necessary hypotheses. If f(x) = y has a unique solution x, then g(z) ∼ w
has a unique solution z up to equivalence, and x = ρ(z) for any solution z, and
hence x is computable. Because g preserves (∼) by Lemma 4.1, if g(z) ∼ w has
a solution z, then x = ρ(z) is a solution of f(x) = y. This shows that f(x) = y
has a solution iff g(z) = w has a solution, and we can reduce the semi-decision
of absence of solutions of f(x) = y to absence of solutions of g(z) = w. ut



5 Exhaustible Spaces of Analytic Functions

For any ε ∈ (0, 1), any x ∈ [−ε, ε], any b > 0, and any sequence a ∈ [−b, b]N, the
Taylor series

∑
n anx

n converges to a number in the interval [−b/(1+ε), b/(1−ε)].
The following is proved by a standard computational analysis argument:

Lemma 5.1. Any analytic function f ∈ R[−ε,ε] of the form f(x) =
∑
n anx

n is
computable uniformly in any given ε ∈ (0, 1), b > 0 and a ∈ [−b, b]N.

Definition 5.1. Denote by A = A(ε, b) ⊆ R[−ε,ε] the subspace of such analytic
functions and by T = Tε,b : [−b, b]N → A(ε, b) the functional that implements the
uniformity condition, so that f = T (a). ut

The following results also hold uniformly in ε and b, but we omit explicit in-
dications for the sake of brevity. The results are uniform in the exhaustibility
assumptions too. Because [−b, b]N is compact and T is continuous, the space A
is compact as well. Moreover:

Theorem 5.2. The space A has an exhaustible set of Kleene–Kreisel represen-
tatives.

Proof. The space [−b, b]N has an exhaustible space of representatives, e.g. using
signed-digit binary representation. Because exhaustible spaces are preserved by
computable images, the image of any representative pTq : p[−b, b]Nq→ pAq of T
gives an exhaustible set of representatives of A contained in the set pAq of all
representatives of A. ut

Hence the solution of a functional equation with a unique analytic unknown
in A can be computed using Theorem 4.1.

Lemma 5.2. For any non-empty space X with an exhaustible set of Kleene–
Kreisel representatives, the maximum- and minimum-value functionals

maxX ,minX : RX → R

are computable.

Of course, any f ∈ RX attains its maximum value because it is continuous and
because spaces with exhaustible sets of representatives are compact.

Proof. We discuss max only. By e.g. the algorithm given in [6], this is the case
for X = 2N. Because the representing space pXq, being a non-empty exhaustible
subspace of a Kleene–Kreisel space, is a computable image of the Cantor space,
the space X itself is a computable image of the cantor space, say with q : 2N → X.
Then the algorithm maxX(f) = max2N (f ◦ q) gives the required conclusion. ut

Corollary 5.1. If K is a subspace of a metric space X and K has an exhaustible
set of Kleene–Kreisel representatives, then K is computably located in X, in
the sense that the distance function dK : X → R defined by

dK(x) = min{d(x, y) | y ∈ K}

is computable.



Corollary 5.2. For any metric space X with an exhaustible set of Kleene–
Kreisel representatives, the max-metric d(f, g) = max{d(f(x), g(x)) | x ∈ X}
on RX is computable.

Corollary 5.3. For f ∈ R[−ε,ε], it is semi-decidable whether f 6∈ A.

Proof. Because A is computationally located in R[−ε,ε] as it has an exhaustible
set of representatives, and because f 6∈ A ⇐⇒ dA(f) 6= 0. ut

Another proof, which doesn’t rely on the exhaustibility of a set of represen-
tatives of A, uses Theorem 4.1: f 6∈ A iff the equation T (a) = f doesn’t have a
solution a ∈ [−b, b]N. But this alternative proof relies on a complete metric on
[−b, b]N. For simplicity, we consider a standard construction for 1-bounded metric
spaces. Because we apply this to metric spaces with exhaustible sets of represen-
tatives, this is no loss of generality as the diameter of such a space is computable
as max(λx.max(λy.d(x, y))) and hence the metric can be computably rescaled
to become 1-bounded.

Lemma 5.3. For any computational 1-bounded metric space X, the metric on XN

defined by d(x, y) =
∑
n 2−n−1d(xn, yn) is computable and 1-bounded, and it is

computationally complete if X is.

Proof. Use the fact that the map [0, 1]N → [0, 1] that sends a sequence a ∈ [0, 1]N

to the number
∑
n 2−n−1an is computable. Regarding completeness, it is well

known that a sequence in the space XN is Cauchy iff it is componentwise Cauchy
in X, and in this case its limit is calculated componentwise. ut

Corollary 5.4. The Taylor coefficients of any f ∈ A can be computed from f .

Proof. Because [−b, b]N has an exhaustible set of representatives, the function T
has a computable inverse by Theorem 4.1 and Lemma 5.3. ut
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