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Abstract

We say that a Hausdorff localeégempactly generateidiit is the colimit of the
diagram of its compact sublocales connected by inclusions. We show that this is
the case if and only if the natural map of its frame of opens into the second Lawson
dual is an isomorphism. More generally, for any Hausdorff locale, the second dual
of the frame of opens gives the frame of opens of the colimit. In order to arrive
at this conclusion, we generalize the Hofmann—Mislove—Johnstone theorem and
some results regarding the patch construction for stably locally compact locales.
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1 Introduction

In his work on function spaces of locales [11], Johnstone left the development of a the-
ory of compactly generated locales open, emphasizing the advantages of considering
locales over arbitrary toposes in such a development. We perform first steps in this
direction, restricting our attention to the Hausdorff case. Here locales and continuous
maps are the objects and morphisms of the opposite of the category of homomorphisms
of frames, and the Hausdorff property of a loc&lds taken to mean that the diagonal
mapX — X x X is a closed sublocale inclusion.

Compactly generated Hausdorff localeBor a Hausdorff localél, we define
KX = colimit of the compact sublocales &f connected by inclusions

Considering the cocone of inclusions of compact sublocaléSiofto X, the universal
property of colimit gives a canonical map

Ex: KX — X.

We say thatX is compactly generated this is a homeomorphism. In this paper we
analyse this notion in terms of Lawson duality. In order to discuss this, we first intro-
duce and recall notation, terminology and facts.



The topology of a locale Our main references to locales are Johnstone’s books [10]
and [13]. Recall that a sublocale is defined to beegular monomorphism. For a
locale X, we define

O X = topology of X = frame of open sublocales &f .

Isbell’s terminology iparatopology[9]. Open sublocales are ranged overlhy/, W.
The smallest (open) sublocale &fis denoted by) and the largest byx or 1.

Lawson duality and the Hofmann—Mislove—Johnstone theorefapreframe (or meet-
continuous semilattice) is a poset with finite meets and directed joins such that the
former distribute over the latter. For a preframgeone has a preframe

L" = Lawson dual ofL. = Scott open filters of..

For any preframe homomorphisim L — M, one has a preframe homomorphism
hN: M™ — L” defined by

W(y) = {ue L] h(w) €7}

This makes Lawson dualization into a contravariant endofunctor, which in turn makes
the preframe homomorphism

€r, . L — L/\A

u — {pel"|ucgp}

into a natural transformation.
For any localeX, let

Q X = compact fitted sublocales undewersesublocale inclusion

where a sublocale is called fitted if it is the meet of its neighbourhoods. The Hofmann-—
Mislove—Johnstone (HMJ) theorem [8, 12] says that the assignment

Q—~{Ue0X|Q<U}
is an order (and hence preframe) isomorphism
QX = (0X)".
Main theorem. We show that ifX is Hausdorff then all compact sublocales are fitted

and
OKX = (QX)".

It follows that X is compactly generated if and only if the opens are determined by the
compacts via Lawson dualization:

X is compactly generated— O X = (Q X)A‘



By the HMJ theorem, it follows that
OKX = (0X)™.
From this and additional information we conclude that
X is compactly generated— O X = (O X)"" naturally.

For Hausdorff topological spaces, Hofmann and Lawson [7] had previously established
the direction(=-) of this conclusion. They achieved this by showing that, under suitable
assumptions, the direct limit of preframes that are naturally isomorphic to their second
duals is itself naturally isomorphic to its second dual. Their proof invokes the axiom
of choice in a way that we haven’t been able to avoid. In any case, we observe that this
doesn't establish the implicatigir=) or thatO KX = (0 X)™".

It follows from the description ofCX via Lawson duality thatCX has enough
compacts for any Hausdorff local€, in the sense thdf < V holds inO KX if and
onlyif @ < U impliesQ < V forall @ € QK X. Hence, in toposes satisfying the
axiom of choice, compactly generated Hausdorff locales have enough points, because
in such a topos every non-null compact locale has at least one point [10].

The patch construction.A striking connection with the patch construction [3] arises
in our journey to the isomorphis@ X = (Q X)A. This construction coreflectively
transforms a stably locally compact localeinto a locally compact Hausdorff locale,
denoted byPatch X and given by

O Patch X = frame of Scott continuous nuclei @ X .

For example, for a continuous poset that is stably locally compact in its Scott topology,
the patch construction transforms the Scott topology into the Lawson topology. In
the original formulation, regularity is used instead of the Hausdorff separation axiom,
but the work of Vermeulen [15] shows that both notions coincide in the presence of
compactness or local compactness.
If X is additionally compact, the prefran®2 X is a frame. Moreover, this is
the topology of another compact, stably locally compact locale [6, 10], here denoted
by X°P;
OXP=QX.

ThenX = X°P °P which shows tha X°F =~ O X,
Patch X°P = Patch X,

the localeX is Hausdorff if and only ifX =~ X°P, if and only if X = Patch X.
Constructive proofs of these classically known facts are given in [2].

Now, for any Hausdorff localéX, the preframed X is a frame if and only ifX is
compact. Hence if the local&°P exists then it is homeomorphic t&§ and both are
compact Hausdorff. However, for any preframe, the Scott continuous nuclei form a
frame [1]. As a first step towards the main theorem, we show thafy felausdorff,

O KX = frame of Scott continuous nuclei @ X .



Thus, we can imagin£ X as the patch of the non-existent loc&€r. Moreover, we
show that, again foX a Hausdorff locale, a nucleyson @ X is Scott continuous if
and only if the filterj =(1) is Scott open, and that such nuclei are fitted. We record the
immediate consequence:

O KX = frame of fitted nuclej on Q X with 5! (1) Scott open

This brings us back to the HMJ theorem.

A generalized HMJ theoremIn terms of frames and nuclei, the HMJ theorem says
that, for any frameL, the assignmenf — j~1(1) is an order isomorphism from
compact fitted nuclei orl to the preframel”. Moreover, a nucleug is compact

if and only if the filter j=*(1) is Scott open. This holds, more generally,Lifis a
Heyting preframe, with literally the same proof of the HMJ theorem given in [5]:

1.1 THEOREM For any Heyting preframé., everyy € L is of the formj—1(1) for a
unique compact fitted nuclegon L, given byj = \/{u° | u € ¢}.

Here au’ is the “open” nucleus
u’(v) = (u=v),

and a nucleus is said to be fitted if it is a join of open nuclei. In other words, the theorem
says that there is an isomorphism

L" = preframe of fitted nuclej on L with j~*(1) Scott open

given by
A@g) = \{u |ues}, V(G =5"1).

Now, a sufficient condition fo© X being a Heyting preframe is that the meet of
any two compact fitted sublocales, calculated in the lattice of sublocales, be compact,
because the® X has all non-empty joins, which are enough to construct Heyting
implication. Because this condition holds if the loc&lds Hausdorff, the main result
OKX =~ (QX)" is obtained by considerin = Q X in the above theorem.

What makes the above theorem difficult is that, in general, such joins are not com-
puted pointwise. Fof. = O X with X a stably locally compact locale, there is a more
economical proof of the HMJ theorem, which first establishes that the join is computed
pointwise in this particular situation [3]. It turns out that this method can also be used
to establish the above theorem for= Q X with X Hausdorff, and we present such a
proof of the theorem for this special case.

Partial results and open questiondt is well known that the category of compactly
generated Hausdorff topological spaces is a coreflective subcategory of that of Haus-
dorff spaces [14]. Also, the canonical map/XX — X is a monomorphism in the
category of spaces, because the sgédehas the same points a8 and a finer topol-
ogy, and the canonical map is the identity on points.

We show that if the canonical map is a monomorphism for Hausdorff locales, then
compactly generated Hausdorff locales form a coreflective subcategory of that of Haus-
dorff locales. Hence we are led to ask:



1.2 QUESTION Isex a monomorphism for every Hausdorff locate?

It is plausible thatCX is Hausdorff even it x fails to be a monomorphism. Gener-
alizing the above, we show, with a more laborious argument, thiéifis Hausdorff

for every Hausdorff localeX, then the coreflection holds. Hence, if the answer to the
previous question is negative, or the question resists to be answered, we are led to ask,
more modestly:

1.3 QUESTION DoesK preserve the Hausdorff property?

In the course of this investigation, we have obtained a number of additional partial
results in various directions, in particular regarding cartesian closedness, which are
recorded in the unpublished paper [4].

Generality of the results.Our results hold for locales over any topos. In practice, as
usual, this is achieved by working informally within set theory, but without invoking
the principle of excluded-middle, the axiom of choice, or any principles that are not
valid in the internal language of arbitrary toposes. (Whenever we say that a set is
non-emptywe mean the positive statement that iinkabited)
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2 The first Lawson dual of a Hausdorff locale

In this section we analyse the prefra@eX and the notion of Hausdorff separation for
alocaleX.

2.1 The preframe of compact closed sublocales

Our proofs of the results discussed in the introduction rely on representing the pre-
frame Q X as a subpreframe of the frand®2X, whereX is a Hausdorff locale. Be-

cause the compact sublocales of a Hausdorff locale are closed, we can represent them
by their open complements. In particular, because complementation reverses order,
the order reversal that arises in the constructio@of is cancelled out. More gener-

ally, the compact closed sublocales of any locale are in order-reversing bijection with

a subpreframe of the topology of the locale.

2.1 DEFINITION We say that an open sublocaleof a localeX is cocompacif its
boolean complement \ C in the lattice of sublocales of is compact. The poset of



cocompact opens of is denoted by X and cocompact opens are ranged over by the
lettersC, D, E.

Because the topology of the closed sublocale whose complement is thé/dpehe
frame1U = {V € OX | U < V}, the first and second assertions of the following
lemma are equivalent. Since a sublocalgof a localeX induced by a nucleus is
compact if and only if its open-neighbourhood filfer! (1) is Scott open and since the
boolean complement of an open sublocélés the sublocale induced by the closed
nucleus

UB(V)=UVYV,

the equivalence of the first and the third follow.

2.2 LEMMA The following are equivalent for any open sublocélef a locale X.
1. C'is cocompact.
2. The top opert is compact in the frame¢C ={U € OX | C < U}.
3. Thefilter{U € O X | C vU = X} is Scott open.

2.3 LEMMA The following hold for any locale.
1. If C'is a cocompact open arid > C'is open, ther/ is cocompact.

2. The cocompact opens are closed under the formation of non-empty joins and
Heyting implication in the topology.

3. The cocompact opens are closed under the formation of finite meets.
4. The cocompact opens form a sub Heyting preframe of the topology.

5. The top open is compact in the preframe of cocompact opens.

PROOF (1): A closed sublocale of a compact sublocale is compact.

(2): Heyting implication is inflationary in its second argument.

(3): Compact sublocales are closed under finite joins.

(4): Immediate.

(5): LetD be a directed set of cocompact opens wWittD = 1 and choose any
C € D. Becaus&' is cocompact] is compact in the framgC and hencd € DN1C
because this set has the same joiPdsy directedness. O

Notice that 2.3(5) amounts to the fact that if a filtered collection of compact closed
sublocales has megtthen some member of the collection is alre@dilotice also that
cocompact opens are closed under the formation of the empty jbisnd only if the
locale is compact. By 2.3(1), this is equivalent to saying that all opens are cocompact.



2.2 Hausdorff locales

Hausdorff locales are closed under the formation of sublocales, and compact sublocales
of Hausdorff locales are closed [15]. Hence every compact sublocale of a Hausdorff
locale is closed and Hausdorff. Most of the results formulated for Hausdorff locales in
the introduction hold for locales satisfying this conclusion.

2.4 DEFINITION We say that a locale igroto-Hausdorffif every compact sublocale
is closed and Hausdorff.

Our reason for considering the generalization is that it distills the properties of Haus-
dorff locales that we exploit in our technical development, and the chosen terminology
reflects the fact that we don't attach importance to it.

2.5 REMARK All the results formulated for Hausdorff locales in Sections 3-5, with
the sole exception of 5.7, hold for proto-Hausdorff locales with the same proofs.

We exploit the fact that, in the presence of compactness, the Hausdorff and regularity
separation axioms coincide [15]. Recall that a locale is caéigdlar if every openl

is a join of opend/ € V. HereU < V is defined to mean théf~ <V, whereU ™ is

the closure o/ in X, which is equivalent td” v -U = X, where—-U is the Heyting
complement o/ in O X. In this case one says thdtis well insideV'.

2.6 DEFINITION ForC € CX andD,E € 1C, we write E £ D to denote the
well-inside relation of the framgC.

Becausé E = () calculated inO X orC X is the Heyting complement df in 1 C,
EZ¢cD < DV (E=C)=1.

The following easy observation is our main method of proof for various facts concern-
ing (proto-)Hausdorff locales.

2.7 LEMMA The following are equivalent for any proto-Hausdorff localeand alll
CeCXandD,D' e 1C.

1. D< D,

2. DV E =1impliesD’Vv E = 1foreveryE € 1 C.

3. E Z¢ DimpliesE < D' foreveryE € 1C,
PrRoOF (1) = (2): Immediate.(2) = (3): If E £€¢c DthenDV (E = C) =1
and hence the assumption (2) shows thaty (E = C) = 1, thatis,E €¢ D/,

which in turn givest' < D’. (3) = (1): This amounts to regularity of the compact
sublocaleX \ C, because its topology i5C. O



The following is easily verified.

2.8 LEMMA For any localeX, the mapnx: C X — (O X)" defined by
a(C)={UeOX|CVU=1}
is a preframe homomorphism.

2.9 LEMMA For any proto-Hausdorff localeX,
1. ax: CX — (O X)" is an isomorphism, and

2. all compact sublocales of are fitted.

PROOF (1): By the HMJ theorem and the proto-Hausdorff property, i (O X)"
then there is” € C X with ¢ = VCF = «(C). Hencex is a surjection. To show that
it is an injection, assume tha{C) = a(D), thatis,C VU =1 < DV U = 1for
everyU € O X. Becaus&' A D € C X andC, D € 1(C A D), it follows from 2.7(2)
thatC = D, as required.

(2): By the proto-Hausdorff property, it is enough to show thgtis fitted for every
C € CX. By the HMJ theorem and the proto-Hausdorff property, the® is C X
with DU fitted anda(C') = VDV = (D). ButthenD = C by (1) and henc&® is
fitted, as required. O

3 The colimit construction

In the introduction we constructed a loc#leX for every Hausdorff local&X'. Gener-
alizing this, for an arbitrary local&’, we definelCX to be the colimit of the compact
closed sublocales of . For eachC € C X,

O(X\C)=1C,
and if D > C then we have a sublocale embedding:: X \ D — X \ C given by
ihe(U)=DVU.

Itis clear thatifE > D > C then

LED

X\ E X\ D
ZEC\* '/iDc
xX\C,

and thaticc: X \ C — X \ C is the identity. In other words, this construction
produces a functoF' : (C X)°? — Loc, given by F/(C) = X \ C on objects and by

F(D>C)=(X\D b x \ C) on arrows. We denote the legs of the colimiting
cocone by
ic: X\ C — KX.



Because colimits irfLoc are limits in Frm, which can be calculated as in the
category of sets, with pointwise joins and finite meets,

OKX = {je [] 101YD =0, j(D)=ihe(i(C)}
cecx
= {j: CX—>CX|VD>C, j(D)=DVjC)}.
The second equations holds because
J€lleeex 1C <= C<j(C)forall CeCX,

and because this is entailed by the condition ff{&1) = D v j(C) forall D > C as
the choiceC' = D shows. The legs-: X \ C — KX of the colimiting cocone are

then given by
ic(j) =3(C),

as these are the projections in the category of sets. If the ffaapX \ C — Y are the
legs of another cocone, that is, fbr> C,

X\D xX\C
N

then the unique continuous mgp XX — Y such that

x\c ‘¢

o g

for everyC € C X is given by
frV) =(C = fe(V)),

again by the nature of limits in the category of sets.
Now consideringl” = X and fo = e¢ in the above construction, where the
continuous map¢: X \ C — X is the closed inclusion

ex(U)=CVvU,
we obtain a cocone and hence a unique map X — X with

ic

XC’\ /

for everyC € C X, given by
e"(U)=(C—CVU).

We now have a closer look at the topologykok .



3.1 LEMMA For any localeX and every function: C X — C X, the following are
equivalent.

1. j € OKX.
2. j(D)=j(C)vDforal D>CinCX.
3.j(CvU)=j(C)vUforal CeCXandU € O X.

4. j(CVE)=j(C)v Eforall C,FE e(CX.
PrRoOF (1 < 2): This has already been establishe@. = 3): ChoosingD =
C v U, as we may becaugkX is an upper set, we havg < D and hencé€2) gives
J(CvU)=4(C)vCVvU=j(C)VU becaus& < j(C), as we have already seen.
(3 = 4): Immediate. (4 = 2): For D > C we have that v D = D, and hence
using(4) with E = D, we getj(D) = j(C) Vv D, as required. O

3.2 LEMMA For any localeX, everyj € O KX is a nucleus o€ X .

PROOF We have already seen that< j(C). By 3.1(2) with the choicéd = j(C)
we conclude thaj(j(C)) = j(C) vV j(C) = j(C) and hence that is idempotent. For
given D and D', the choiceC' = D A D’, which impliesD > C andD’ > C, gives
Jj(D)=43(DAD"YVvDandj(D')=j(DAD")VvD. Iltfollows thatj(D) Aj(D’) =
(GJ(DADYVD)AN(GF(DAD)YVD)=4(DAND)V(DAD')=j(DAD’) using
distributivity and again the fact thats inflationary, which shows thgtpreserves finite
meets. O

For any nucleug on a meet-semilattice, there is a filt€j = j~*(1).
3.3 LEMMA For any nucleug on a Heyting semilatticé and anyu € L, the inequal-
ity u® < j holds if and only ifj(u) = 1, whereu®(v) = (u = v).

The standard proof for frames works without any modification. In particular, we have
that\/{u° | j(u) = 1} < j, and the nucleugis calledfitted if equality holds.

3.4 THEOREM The following are equivalent for any Hausdorff locale and every
nucleusj: C X — CX.

1. j € OKX.

2. j preserves non-empty joins.

3. j is Scott continuous.

4. Vje(x)"
PrRoOOF (1) = (2): Binary joins:j(C' v D) = j(C) v D < j(C) Vv j(D) by 3.1(4),
and the other inequality holds by monotonicity of Directed joins: LetD C C X

be a directed set and choose arlye D. Then, using 3.1(4) twice and the fact that
the binary-join operation preserves directed joins in any of its argumgiysD) =

j(CV\/D) :j(C) \/\/D = \/DEDj(C) VD= \/Depj(CVD) = vEeD](E)
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The last equation holds by directednesdpfbecause ifD € D then there is some
E € D aboveD andC and hence abov€ Vv D.

(2) = (3): Immediate.

(3) = (4): The set{1} is Scott open irf X by 2.3(5).

(4) = (1): By 3.1(2), it suffices to show that D) < DV j(C) for D > C because
the other inequality holds gsis inflationary and monotone. We apply 2.7(2) using the
fact thatj(D) andD Vv j(C) belong to] C. ForE € 1 C with1 = EV j(D), we need
to conclude that = Ev D v j(C). Sincel = EV j(D) < j(E Vv D), Scott openness
of Vj and regularity off C' show that there is somB <~ E Vv D such that already
1 = j(B). By 3.3, the second condition givé8 = C) < j(C), and hence the first
condition givesl = EV DV (B= C) < EV DV j(C), as required. O

3.5 CoROLLARY If X is Hausdorff then the topology & X consists of the nuclei
onC X with Vj € (C X)".

4 The second Lawson dual of a Hausdorff locale

Our next goal is to show th&t X = (C X)" if X is Hausdorff. If we show that every
nucleusj € O K X isfitted, the result then follows directly from 3.5 and 1.1. However,
as discussed in the introduction, there is a more direct proof of the special case of 1.1
invoked here, which we now develop. Half of this argument has the fittedness condition
as an immediate consequence.

For afilterp C C X, let

A¢=\/{D°| D € ¢},

where the join is calculated in the frame of nuclei on the prefré&m& In order to
show that this join can be computed pointwise #6Hausdorff andy € (C X)", we
develop a variation of an argument previously applied to prove [3, Lemma 5.14.4L et
denote the pointwise join:

ke(C)=\/{D = C| D e ¢}

4.1 LEMMA LetX be a Hausdorff localep € (C X)", andk = k.
1. IfDegpandE A D < CthenE < g(C).

2. fC<C'"andFE Z¢ k(C’)thenE A D € C' for someD € ¢.
PrROOF (1): By definition of Heyting implication.

(2): By the assumption] = x(C’) vV (E = C). Hence, by directedness of
the defining join ofx(C’) and cocompactness 6F = C), there is someD’ € ¢
with 1 = (D' = C') vV (E = (). It follows thatE < (D' = C’). Because
(D'v(C'= C") = (D' = (') and because, being a filter, is upper closed, we may
assume thaD’ > ¢’ and hence thab’ € 7 C. Then, becausé is Scott open and
1 C'is a regular frame, there is sonie - D’ in ¢. Finally, because the well-inside
relation is multiplicative [10], we conclude th&tA D €« (D' = C')AD' < ', as
required. O

11



4.2 LEMMA If X is Hausdorff and € (C X)" thenA¢ = x.

PrROOF It is enough to show that = x4 is a nucleus. Becauseis a pointwise di-
rected join of nuclei, it is inflationary and, by the preframe distributive law, it preserves
finite meets. To show that is idempotent, leff € x(k(C)). By two successive
applications of 4.1(2), we first conclude thatA D € x(C) for someD € ¢ and
thenthatE A D A D' < C for someD’ € ¢. SinceD A D' € ¢ as¢ is a filter, we
conclude by 4.1(1) thab < x(C). By 2.7(3), it follows thatx(x(C)) < x(C), as
required. O

4.3 LEMMA If X is Hausdorff andi € O KX thenAV; = j and hencgj is fitted.

PrRooOF AVj(C) = \{D = C | j(D) = 1} < j(C) by 4.2 and 3.3. In order
to prove the opposite inequality, &t €< j(C). Thenl = j(C) Vv (F = C) <
JICYVIE = C)<jlCVv(E=C)=jE=C). TakingD = (E = (), it
follows thatE < ((E = C) = C) = (D = C) < AVj(C). The result then follows
by 2.7(3). O

The following is a simplification of the argument applied by Johnstone to prove
[12, Lemma 2.4], exploiting the fact that¢ is calculated pointwise in our situation:

4.4 LEMMA If X is Hausdorff andp € (C X)" thenVA¢ = ¢.

PROOF LetC € VA¢, thatis,A¢(C) = 1. Becausd € ¢ and¢ is Scott open,
we conclude by directedness of the defining join\af that(D = C) € ¢ for some
D € ¢. HenceC > (D = C) A D is in ¢ too becaus@ is a filter, which shows that
VA¢ C ¢. Conversely, leC € ¢. Then(C = C) =1 € ¢ and hence\¢(C) = 1,
that is,C' € VA¢, which shows thap C VA¢g. O

There is no reason why the nucledi§ should belong t@ KX if C € ¢, butitis
a corollary of the above development that the join of such nuclei does:

4.5 LEMMA If X is Hausdorff andp € (C X)" thenA¢ € OKX.

PROOF If j = A¢ thenj is a nucleus withVj = VA¢ = ¢ € (C X)", and hence
the desired conclusion follows from 3.4. O

Hence:

4.6 THEOREM If X is a Hausdorff locale then the assignmgnt> Vj is an isomor-
phismO KX — (C X)" with inversep — Ag.

We have seen in 2.9 that the map C X — (O X)" defined by
a(C)={UeOX|CVU=1}

is an isomorphism for any Hausdorff locale Dualizing this, we get an isomorphism
o (0X)M = (¢ X))

4.7 COROLLARY The mapA o o”: (O X)) — O KX is an isomorphism for any
Hausdorff localeX.

12



Recall that the natural map © X — (O X)"" is defined by
e(U)={¢ € (0X)"|U € ¢}.

4.8 COROLLARY If X is Hausdorff, there: O X — (O X)"" is an isomorphism if
andonly if3: © X — (C X)" defined by

BU)=a"oe(U)={CeCX|CVU=1}
is an isomorphism.

4.9 LEMMA For any localeX,

(o x)™ —= Ccx)".

PrROOF ForanyU € O X and anyC' € C X we have that” € Ve*(U) if and only
if e*(U)(C) =1ifandonlyifU v C = 1ifandonly ifU € «(C) if and only if
a(C) e e(U)ifand only if C € o (e(U)). O
It follows that if X is Hausdorff there: O X — (O X)™" is a frame homomor-
phism, because* is a frame homomorphism ard' andV are isomorphisms.

4.10 COROLLARY If X is a Hausdorff locale, theay: KX — X is a homeomor-
phismif and only it: O X — (O X)"" is an isomorphism.

PROOF Again because” andV are isomorphisms. O

We now develop functoriality ofC and naturality ofe. For a continuous map
f: X — Y of Hausdorff locales, consider the diagram

AN

A
ox 99X ox)" 25 ex) X okx
[ (f*ﬁAA

oYy —— (OY)" — (V) — 0
COy Qry Ay

The left square commutes by naturalityeoBecause the action of Lawson dualization
on morphisms is given by inverse images and because the pre((adie)M, being
isomorphic to the framé KX, is in fact a frame, we conclude that the preframe ho-
momorphisn(f*)"" is actually a frame homomorphism. Hence the right rectangle de-
fines a frame homomorphis(Cf)*: OKY — O KX, because its horizontal arrows
are isomorphisms, and hence a continuous #gp KX — KY. This construction
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is clearly functorial. By 4.9 and the fact th&tis an isomorphism with inversa, the
horizontal arrows of the outer rectangle compose to give

*

ox X okx x <X kx

f*I I(/Cf)* fl l’cf

OY —» OKY, Y « kY.
€y &y

This proves:

4.11 THEOREM K is functorial on Hausdorff locales, making the canonical map
into a natural transformation.

5 Coreflection

We begin by showing that i is Hausdorff, thenX and KX have the same compact
closed sublocales.

5.1 LEMMA Let X be any locale.
1. Foranyj e OKX andallD, F € C X, we have thaj(D)V E =DV j(E).

2. IfC eCXandj € OKX thene%,(C) V j =% (4(C)).

3. If D e C X ande’ (D) = 1thenD = 1.

PrRooF (1): This follows from two applications of 3.1(4). (2): For abye C X, we
have thate’ (C)Vj)(D) = CVvDVj(D) =CVj(D) =j(C)vD =% (j(C))(D).
(3): If 1 = &% (D) thenl = 1(D) = % (D)(D) = DV D = D. O

5.2 LEMMA For any localeX, if C € C X thene’%, (C) e CKX.

PrROOF We use 5.1 and 2.2. Assume thgt(C)v\/ J = 1for J C O KX directed.

Thene% (\/ J(C)) = 1 and hencd/ J(C) = 1. Because joins i) £ X are calculated

pointwise and the s€tj(C) | j € J} is directed, 2.3(5) giveg € J with j(C) = 1.

Butthene’, (C) vV j = % (§(C)) = €% (1) = 1, as required. O
Hence the frame homomorphisi#} (co)restricts to a preframe homomorphiam

as in the left square, whefg andixx are the preframe inclusions:

OX X cx cx X, ox)
: A
ek :h ht I@m
v H
OKX «—— CKX, CKX — (OKX)".
[790'¢ aKx

By 2.9, the mapvx: CX — (O X)A is an isomorphism i is Hausdorff, and hence
in this case there is a preframe homomorphism defined by commutativity of the
right square. The following is immediate:
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5.3 LEMMA For any localeX,

Ox) ¥ oex

(iX)Ai fix
(CX) E 0X.

Here8x = (aX)A o ep x isthe preframe homomorphism considered in Corollary 4.8,
and notice thatix )" maps a filtery € (O X)" toits restriction(¢p N C X) € (C X)".

5.4 LEMMA If X is Hausdorff therh: C X — C KX is an isomorphism with inverse
—1: CKX — C X as defined above.

PROOF Because the mapsx: CX — (OX)" andV: OKX — (CX)" are
isomorphisms andicx : CKX — OKX is a monomorphism, it is enough to show
thatax oh™loh=ax andVoixxy ohoh™' =V o ixx.

For the first equation, we use 5.1 to calculate, where we have omitted the inclu-
sionsix andix x:

axoh toh(C) = axoay! o (e%)" o axx o e%(C)
(e%)" 0 axx(e%(0))

(%) {FeCX|jvex(C) =1}
= (%)"({FeCX |ex(i(C) =1})
)" {iecx|j(C)=1})
{Ue0X |ex(U)(C)=1}
{UeOX|CVvU=1}

= ax(C).

For the second equation, we use the diagrams of 4.9 and 5.3 and rules of 5.1:

Voikxohoh™'(j) = Voeykoixo a}l o (e%)" o axx(4)
oy oeoixoay' o (e%)" o axx(4)
Boix o a)_(l o ((—:})A o axx(7)

= (ix)" o (e%)" 0 axx(4)

(ix)" o (%) ({k € OKX | j VE =1})
(ix)"({U e OX | jvex(U)=1})
{CeCX|jvex(C)=1}

= {CeCX|jC)=1}

= Voikx(j),

as required. O
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5.5 COROLLARY If X is Hausdorff, thenxx: KKX — KX is a homeomorphism.

5.6 REMARK Asdiscussed in 2.5, all the results formulated for Hausdorff locales hold
for proto-Hausdorff locales with the exception of Proposition 5.7 below.

5.7 RRopPOSITION If e: KA — A is a monomorphism for every Hausdorff locale
then compactly generated Hausdorff locales form a coreflective subcategory of that of
Hausdorff locales.

PrROOF If Ais HausdorffandCA — A is a monomorphism, theki A is Hausdorff,
for the monomorphism property is equivalent to saying that the diagram

KA S KA x KA

1 |

A—— Ax A
A X

is a pullback, and pullbacks of closed sublocales are closed. Bekdasenctorial on
Hausdorff locales and the canonical mais natural, any continuous mgp X — A
from a compactly generated Hausdorff locale to a Hausdorff locale factors thegugh
askf oeyx': X — KA, and such a factorization is unique becagséCA — A is a
monomorphism. O

If we don’t assume that the canonical map is a monomorphism but we more mod-
estly assume thdf preserves the Hausdorff property, we reach the same conclusion
with a more laborious argument, which we now develop. (Regarding locales satisfying
the proto-Hausdorff property, notice that frto preserve this it is enough that every
compact sublocale df A be closed ford proto-Hausdorff, but we don’t know whether
this is the case.)

5.8 FRoOPOSITION If K preserves the Hausdorff property, then compactly generated
Hausdorff locales form a coreflective subcategory of that of Hausdorff locales.

PROOF By [14, Theorem IV-1.2(v)], it suffices to show thie 4 o el = idicxa
for every Hausdorff localel. Specializing the definition o€ f to f = ¢ 4 and recalling
the definition ofh—! given above, we get

eo KA AR QR A Axa
0KA LK (oA LKA ca) 2R okka
€4 (e)™" (h=1)" (Kea)*

OKA.

A
€o A Ay A
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Recalling that the horizontal arrows composetg, ande*, we calculate

(Kea o ey’

(exa)* o (Kea)®

(exh)* o (Kea)* o Ago ALl

(%A)* o Axao (h™1)" o A7"  (reworking(Kea)* o Ay)

eoka o (@) o A o Axao (k)" 0 ALY (applying 4.9 talex}y)?)
eoheno(@p) o (W) 0 ATl (cancellingArh o Axa)

coka o (aRa) o (W) Lo AL (reworking(h~1)")
(Aaoh”oag,oeoxa)”  (bycontravariance of—)~?).

Hence it suffices to show that' o a} 4, o eo x4 = V4. We calculate using 5.1:

Cehoagyoeoxali) <= h(C)=c4(C)eagyoecoral)
<  axa(ea(C)) € eoxaly)
= j€aka(ex(0)))
= e(O)Vi=1 = ,((C)) =1
— j(C)=1 < CeVa(y),
as required. O
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