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Abstract

We say that a Hausdorff locale iscompactly generatedif it is the colimit of the
diagram of its compact sublocales connected by inclusions. We show that this is
the case if and only if the natural map of its frame of opens into the second Lawson
dual is an isomorphism. More generally, for any Hausdorff locale, the second dual
of the frame of opens gives the frame of opens of the colimit. In order to arrive
at this conclusion, we generalize the Hofmann–Mislove–Johnstone theorem and
some results regarding the patch construction for stably locally compact locales.
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1 Introduction

In his work on function spaces of locales [11], Johnstone left the development of a the-
ory of compactly generated locales open, emphasizing the advantages of considering
locales over arbitrary toposes in such a development. We perform first steps in this
direction, restricting our attention to the Hausdorff case. Here locales and continuous
maps are the objects and morphisms of the opposite of the category of homomorphisms
of frames, and the Hausdorff property of a localeX is taken to mean that the diagonal
mapX → X ×X is a closed sublocale inclusion.

Compactly generated Hausdorff locales.For a Hausdorff localeX, we define

KX = colimit of the compact sublocales ofX connected by inclusions.

Considering the cocone of inclusions of compact sublocales ofX into X, the universal
property of colimit gives a canonical map

εX : KX → X.

We say thatX is compactly generatedif this is a homeomorphism. In this paper we
analyse this notion in terms of Lawson duality. In order to discuss this, we first intro-
duce and recall notation, terminology and facts.



The topology of a locale.Our main references to locales are Johnstone’s books [10]
and [13]. Recall that a sublocale is defined to be aregular monomorphism. For a
localeX, we define

OX = topology ofX = frame of open sublocales ofX.

Isbell’s terminology isparatopology[9]. Open sublocales are ranged over byU, V,W .
The smallest (open) sublocale ofX is denoted by0 and the largest byX or 1.

Lawson duality and the Hofmann–Mislove–Johnstone theorem.A preframe (or meet-
continuous semilattice) is a poset with finite meets and directed joins such that the
former distribute over the latter. For a preframeL, one has a preframe

L∧ = Lawson dual ofL = Scott open filters ofL.

For any preframe homomorphismh : L → M , one has a preframe homomorphism
h∧ : M∧ → L∧ defined by

h∧(γ) = {u ∈ L | h(u) ∈ γ}.

This makes Lawson dualization into a contravariant endofunctor, which in turn makes
the preframe homomorphism

eL : L → L∧∧

u 7→ {φ ∈ L∧ | u ∈ φ}

into a natural transformation.
For any localeX, let

QX = compact fitted sublocales underreversesublocale inclusion,

where a sublocale is called fitted if it is the meet of its neighbourhoods. The Hofmann–
Mislove–Johnstone (HMJ) theorem [8, 12] says that the assignment

Q 7→ {U ∈ OX | Q ≤ U}

is an order (and hence preframe) isomorphism

QX ∼= (OX)∧.

Main theorem.We show that ifX is Hausdorff then all compact sublocales are fitted
and

OKX ∼= (QX)∧.

It follows thatX is compactly generated if and only if the opens are determined by the
compacts via Lawson dualization:

X is compactly generated⇐⇒ OX ∼= (QX)∧.
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By the HMJ theorem, it follows that

OKX ∼= (OX)∧∧.

From this and additional information we conclude that

X is compactly generated⇐⇒ OX ∼= (OX)∧∧ naturally.

For Hausdorff topological spaces, Hofmann and Lawson [7] had previously established
the direction(⇒) of this conclusion. They achieved this by showing that, under suitable
assumptions, the direct limit of preframes that are naturally isomorphic to their second
duals is itself naturally isomorphic to its second dual. Their proof invokes the axiom
of choice in a way that we haven’t been able to avoid. In any case, we observe that this
doesn’t establish the implication(⇐) or thatOKX ∼= (OX)∧∧.

It follows from the description ofKX via Lawson duality thatKX has enough
compacts for any Hausdorff localeX, in the sense thatU ≤ V holds inOKX if and
only if Q ≤ U impliesQ ≤ V for all Q ∈ QKX. Hence, in toposes satisfying the
axiom of choice, compactly generated Hausdorff locales have enough points, because
in such a topos every non-null compact locale has at least one point [10].

The patch construction.A striking connection with the patch construction [3] arises
in our journey to the isomorphismOKX ∼= (QX)∧. This construction coreflectively
transforms a stably locally compact localeX into a locally compact Hausdorff locale,
denoted byPatchX and given by

OPatchX = frame of Scott continuous nuclei onOX.

For example, for a continuous poset that is stably locally compact in its Scott topology,
the patch construction transforms the Scott topology into the Lawson topology. In
the original formulation, regularity is used instead of the Hausdorff separation axiom,
but the work of Vermeulen [15] shows that both notions coincide in the presence of
compactness or local compactness.

If X is additionally compact, the preframeQX is a frame. Moreover, this is
the topology of another compact, stably locally compact locale [6, 10], here denoted
by Xop:

OXop = QX.

ThenX ∼= Xop op, which shows thatQXop ∼= OX,

Patch Xop ∼= Patch X,

the localeX is Hausdorff if and only ifX ∼= Xop, if and only if X ∼= PatchX.
Constructive proofs of these classically known facts are given in [2].

Now, for any Hausdorff localeX, the preframeQX is a frame if and only ifX is
compact. Hence if the localeXop exists then it is homeomorphic toX and both are
compact Hausdorff. However, for any preframe, the Scott continuous nuclei form a
frame [1]. As a first step towards the main theorem, we show that, forX Hausdorff,

OKX ∼= frame of Scott continuous nuclei onQX.
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Thus, we can imagineKX as the patch of the non-existent localeXop. Moreover, we
show that, again forX a Hausdorff locale, a nucleusj onQX is Scott continuous if
and only if the filterj−1(1) is Scott open, and that such nuclei are fitted. We record the
immediate consequence:

OKX ∼= frame of fitted nucleij onQX with j−1(1) Scott open.

This brings us back to the HMJ theorem.

A generalized HMJ theorem.In terms of frames and nuclei, the HMJ theorem says
that, for any frameL, the assignmentj 7→ j−1(1) is an order isomorphism from
compact fitted nuclei onL to the preframeL∧. Moreover, a nucleusj is compact
if and only if the filter j−1(1) is Scott open. This holds, more generally, ifL is a
Heyting preframe, with literally the same proof of the HMJ theorem given in [5]:

1.1 THEOREM For any Heyting preframeL, everyφ ∈ L∧ is of the formj−1(1) for a
unique compact fitted nucleusj onL, given byj =

∨
{u◦ | u ∈ φ}.

Here au◦ is the “open” nucleus

u◦(v) = (u ⇒ v),

and a nucleus is said to be fitted if it is a join of open nuclei. In other words, the theorem
says that there is an isomorphism

L∧ ∼= preframe of fitted nucleij onL with j−1(1) Scott open

given by
∆(φ) =

∨
{u◦ | u ∈ φ}, ∇(j) = j−1(1).

Now, a sufficient condition forQX being a Heyting preframe is that the meet of
any two compact fitted sublocales, calculated in the lattice of sublocales, be compact,
because thenQX has all non-empty joins, which are enough to construct Heyting
implication. Because this condition holds if the localeX is Hausdorff, the main result
OKX ∼= (QX)∧ is obtained by consideringL = QX in the above theorem.

What makes the above theorem difficult is that, in general, such joins are not com-
puted pointwise. ForL = OX with X a stably locally compact locale, there is a more
economical proof of the HMJ theorem, which first establishes that the join is computed
pointwise in this particular situation [3]. It turns out that this method can also be used
to establish the above theorem forL = QX with X Hausdorff, and we present such a
proof of the theorem for this special case.

Partial results and open questions.It is well known that the category of compactly
generated Hausdorff topological spaces is a coreflective subcategory of that of Haus-
dorff spaces [14]. Also, the canonical mapε : KX → X is a monomorphism in the
category of spaces, because the spaceKX has the same points asX and a finer topol-
ogy, and the canonical map is the identity on points.

We show that if the canonical map is a monomorphism for Hausdorff locales, then
compactly generated Hausdorff locales form a coreflective subcategory of that of Haus-
dorff locales. Hence we are led to ask:
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1.2 QUESTION Is εX a monomorphism for every Hausdorff localeX?

It is plausible thatKX is Hausdorff even ifεX fails to be a monomorphism. Gener-
alizing the above, we show, with a more laborious argument, that ifKX is Hausdorff
for every Hausdorff localeX, then the coreflection holds. Hence, if the answer to the
previous question is negative, or the question resists to be answered, we are led to ask,
more modestly:

1.3 QUESTION DoesK preserve the Hausdorff property?

In the course of this investigation, we have obtained a number of additional partial
results in various directions, in particular regarding cartesian closedness, which are
recorded in the unpublished paper [4].

Generality of the results.Our results hold for locales over any topos. In practice, as
usual, this is achieved by working informally within set theory, but without invoking
the principle of excluded-middle, the axiom of choice, or any principles that are not
valid in the internal language of arbitrary toposes. (Whenever we say that a set is
non-emptywe mean the positive statement that it isinhabited.)

Acknowledgements.Reinhold Heckmann is gratefully acknowledged for a careful
reading of a preliminary draft version and Achim Jung for many discussions. This
work was partially developed during a visit to theÉcole Normale Suṕerieure of Paris
in June 2001. Thanks to Giuseppe Longo for the invitation and to Fréd́eric De Jaeger
for discussions on the subject. A preliminary version of this work, which at that time
was restricted to regular locales, was presented at the Venice Second Workshop on For-
mal Topology in April 2002. I am grateful to Per Martin-Löf and Giovanni Sambin for
the invitation to take part of that enjoyable and productive meeting with people from
various (topo)logical communities and to deliver a lecture.

2 The first Lawson dual of a Hausdorff locale

In this section we analyse the preframeQX and the notion of Hausdorff separation for
a localeX.

2.1 The preframe of compact closed sublocales

Our proofs of the results discussed in the introduction rely on representing the pre-
frameQX as a subpreframe of the frameOX, whereX is a Hausdorff locale. Be-
cause the compact sublocales of a Hausdorff locale are closed, we can represent them
by their open complements. In particular, because complementation reverses order,
the order reversal that arises in the construction ofQX is cancelled out. More gener-
ally, the compact closed sublocales of any locale are in order-reversing bijection with
a subpreframe of the topology of the locale.

2.1 DEFINITION We say that an open sublocaleC of a localeX is cocompactif its
boolean complementX \ C in the lattice of sublocales ofX is compact. The poset of
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cocompact opens ofX is denoted byCX and cocompact opens are ranged over by the
lettersC,D,E.

Because the topology of the closed sublocale whose complement is the openU is the
frame↑U = {V ∈ OX | U ≤ V }, the first and second assertions of the following
lemma are equivalent. Since a sublocaleXj of a localeX induced by a nucleusj is
compact if and only if its open-neighbourhood filterj−1(1) is Scott open and since the
boolean complement of an open sublocaleU is the sublocale induced by the closed
nucleus

U�(V ) = U ∨ V,

the equivalence of the first and the third follow.

2.2 LEMMA The following are equivalent for any open sublocaleC of a localeX.

1. C is cocompact.

2. The top open1 is compact in the frame↑C = {U ∈ OX | C ≤ U}.

3. The filter{U ∈ OX | C ∨ U = X} is Scott open.

2.3 LEMMA The following hold for any locale.

1. If C is a cocompact open andU ≥ C is open, thenU is cocompact.

2. The cocompact opens are closed under the formation of non-empty joins and
Heyting implication in the topology.

3. The cocompact opens are closed under the formation of finite meets.

4. The cocompact opens form a sub Heyting preframe of the topology.

5. The top open1 is compact in the preframe of cocompact opens.

PROOF (1): A closed sublocale of a compact sublocale is compact.
(2): Heyting implication is inflationary in its second argument.
(3): Compact sublocales are closed under finite joins.
(4): Immediate.
(5): LetD be a directed set of cocompact opens with

∨
D = 1 and choose any

C ∈ D. BecauseC is cocompact,1 is compact in the frame↑C and hence1 ∈ D∩↑C
because this set has the same join asD by directedness. �

Notice that 2.3(5) amounts to the fact that if a filtered collection of compact closed
sublocales has meet0, then some member of the collection is already0. Notice also that
cocompact opens are closed under the formation of the empty join0 if and only if the
locale is compact. By 2.3(1), this is equivalent to saying that all opens are cocompact.
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2.2 Hausdorff locales

Hausdorff locales are closed under the formation of sublocales, and compact sublocales
of Hausdorff locales are closed [15]. Hence every compact sublocale of a Hausdorff
locale is closed and Hausdorff. Most of the results formulated for Hausdorff locales in
the introduction hold for locales satisfying this conclusion.

2.4 DEFINITION We say that a locale isproto-Hausdorffif every compact sublocale
is closed and Hausdorff.

Our reason for considering the generalization is that it distills the properties of Haus-
dorff locales that we exploit in our technical development, and the chosen terminology
reflects the fact that we don’t attach importance to it.

2.5 REMARK All the results formulated for Hausdorff locales in Sections 3–5, with
the sole exception of 5.7, hold for proto-Hausdorff locales with the same proofs.

We exploit the fact that, in the presence of compactness, the Hausdorff and regularity
separation axioms coincide [15]. Recall that a locale is calledregular if every openV
is a join of opensU 0 V . HereU 0 V is defined to mean thatU− ≤ V , whereU− is
the closure ofU in X, which is equivalent toV ∨ ¬U = X, where¬U is the Heyting
complement ofU in OX. In this case one says thatU is well insideV .

2.6 DEFINITION For C ∈ CX andD,E ∈ ↑C, we writeE 0C D to denote the
well-inside relation of the frame↑C.

Because(E ⇒ C) calculated inOX or CX is the Heyting complement ofE in ↑C,

E 0C D ⇐⇒ D ∨ (E ⇒ C) = 1.

The following easy observation is our main method of proof for various facts concern-
ing (proto-)Hausdorff locales.

2.7 LEMMA The following are equivalent for any proto-Hausdorff localeX and all
C ∈ CX andD,D′ ∈ ↑C.

1. D ≤ D′,

2. D ∨ E = 1 impliesD′ ∨ E = 1 for everyE ∈ ↑C.

3. E 0C D impliesE ≤ D′ for everyE ∈ ↑C,

PROOF (1) ⇒ (2): Immediate.(2) ⇒ (3): If E 0C D thenD ∨ (E ⇒ C) = 1
and hence the assumption (2) shows thatD′ ∨ (E ⇒ C) = 1, that is,E 0C D′,
which in turn givesE ≤ D′. (3) ⇒ (1): This amounts to regularity of the compact
sublocaleX \ C, because its topology is↑C. �
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The following is easily verified.

2.8 LEMMA For any localeX, the mapαX : CX → (OX)∧ defined by

α(C) = {U ∈ OX | C ∨ U = 1}

is a preframe homomorphism.

2.9 LEMMA For any proto-Hausdorff localeX,

1. αX : CX → (OX)∧ is an isomorphism, and

2. all compact sublocales ofX are fitted.

PROOF (1): By the HMJ theorem and the proto-Hausdorff property, ifφ ∈ (OX)∧

then there isC ∈ CX with φ = ∇C� = α(C). Henceα is a surjection. To show that
it is an injection, assume thatα(C) = α(D), that is,C ∨ U = 1 ⇐⇒ D ∨ U = 1 for
everyU ∈ OX. BecauseC ∧D ∈ CX andC,D ∈ ↑(C ∧D), it follows from 2.7(2)
thatC = D, as required.

(2): By the proto-Hausdorff property, it is enough to show thatC� is fitted for every
C ∈ CX. By the HMJ theorem and the proto-Hausdorff property, there isD ∈ CX
with D� fitted andα(C) = ∇D� = α(D). But thenD = C by (1) and henceC� is
fitted, as required. �

3 The colimit construction

In the introduction we constructed a localeKX for every Hausdorff localeX. Gener-
alizing this, for an arbitrary localeX, we defineKX to be the colimit of the compact
closed sublocales ofX. For eachC ∈ CX,

O (X \ C) = ↑C,

and ifD ≥ C then we have a sublocale embeddingiDC : X \D → X \ C given by

i∗DC(U) = D ∨ U.

It is clear that ifE ≥ D ≥ C then

X \ E
iED - X \D

@
@@iEC R 	��

�
iDC

X \ C,

and thatiCC : X \ C → X \ C is the identity. In other words, this construction
produces a functorF : (CX)op → Loc, given byF (C) = X \ C on objects and by

F (D ≥ C) = (X \ D
iDC−→ X \ C) on arrows. We denote the legs of the colimiting

cocone by
iC : X \ C → KX.
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Because colimits inLoc are limits in Frm, which can be calculated as in the
category of sets, with pointwise joins and finite meets,

OKX = {j ∈
∏

C∈CX

↑C | ∀D ≥ C, j(D) = i∗DC(j(C))}

= {j : CX → CX | ∀D ≥ C, j(D) = D ∨ j(C)}.

The second equations holds because

j ∈
∏

C∈CX ↑C ⇐⇒ C ≤ j(C) for all C ∈ CX,

and because this is entailed by the condition thatj(D) = D ∨ j(C) for all D ≥ C as
the choiceC = D shows. The legsiC : X \ C → KX of the colimiting cocone are
then given by

i∗C(j) = j(C),

as these are the projections in the category of sets. If the mapsfC : X \C → Y are the
legs of another cocone, that is, forD ≥ C,

X \D
iDC - X \ C

@
@@fD R 	��

�
fC

Y,

then the unique continuous mapf : KX → Y such that

X \ C
iC - KX

@@
@fC R 	�

��
f

Y

for everyC ∈ CX is given by

f∗(V ) = (C 7→ f∗C(V )),

again by the nature of limits in the category of sets.
Now consideringY = X and fC = εC in the above construction, where the

continuous mapεC : X \ C → X is the closed inclusion

ε∗C(U) = C ∨ U,

we obtain a cocone and hence a unique mapεX : KX → X with

X \ C
iC - KX

@@@εC R 	���
ε

X

for everyC ∈ CX, given by

ε∗(U) = (C 7→ C ∨ U).

We now have a closer look at the topology ofKX.
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3.1 LEMMA For any localeX and every functionj : CX → CX, the following are
equivalent.

1. j ∈ OKX.

2. j(D) = j(C) ∨D for all D ≥ C in CX.

3. j(C ∨ U) = j(C) ∨ U for all C ∈ CX andU ∈ OX.

4. j(C ∨ E) = j(C) ∨ E for all C,E ∈ CX.

PROOF (1 ⇔ 2): This has already been established.(2 ⇒ 3): ChoosingD =
C ∨ U , as we may becauseCX is an upper set, we haveC ≤ D and hence(2) gives
j(C ∨ U) = j(C) ∨ C ∨ U = j(C) ∨ U becauseC ≤ j(C), as we have already seen.
(3 ⇒ 4): Immediate.(4 ⇒ 2): For D ≥ C we have thatC ∨ D = D, and hence
using(4) with E = D, we getj(D) = j(C) ∨D, as required. �

3.2 LEMMA For any localeX, everyj ∈ OKX is a nucleus onCX.

PROOF We have already seen thatC ≤ j(C). By 3.1(2) with the choiceD = j(C)
we conclude thatj(j(C)) = j(C) ∨ j(C) = j(C) and hence thatj is idempotent. For
givenD andD′, the choiceC = D ∧ D′, which impliesD ≥ C andD′ ≥ C, gives
j(D) = j(D ∧D′)∨D andj(D′) = j(D ∧D′)∨D′. It follows thatj(D)∧ j(D′) =
(j(D ∧D′) ∨D) ∧ (j(D ∧D′) ∨D′) = j(D ∧D′) ∨ (D ∧D′) = j(D ∧D′) using
distributivity and again the fact thatj is inflationary, which shows thatj preserves finite
meets. �

For any nucleusj on a meet-semilattice, there is a filter∇j = j−1(1).

3.3 LEMMA For any nucleusj on a Heyting semilatticeL and anyu ∈ L, the inequal-
ity u◦ ≤ j holds if and only ifj(u) = 1, whereu◦(v) = (u ⇒ v).

The standard proof for frames works without any modification. In particular, we have
that

∨
{u◦ | j(u) = 1} ≤ j, and the nucleusj is calledfitted if equality holds.

3.4 THEOREM The following are equivalent for any Hausdorff localeX and every
nucleusj : CX → CX.

1. j ∈ OKX.

2. j preserves non-empty joins.

3. j is Scott continuous.

4. ∇j ∈ (CX)∧.

PROOF (1) ⇒ (2): Binary joins:j(C ∨D) = j(C) ∨D ≤ j(C) ∨ j(D) by 3.1(4),
and the other inequality holds by monotonicity ofj. Directed joins: LetD ⊆ CX
be a directed set and choose anyC ∈ D. Then, using 3.1(4) twice and the fact that
the binary-join operation preserves directed joins in any of its arguments,j(

∨
D) =

j(C ∨
∨
D) = j(C) ∨

∨
D =

∨
D∈D j(C) ∨D =

∨
D∈D j(C ∨D) =

∨
E∈D j(E).
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The last equation holds by directedness ofD, because ifD ∈ D then there is some
E ∈ D aboveD andC and hence aboveC ∨D.

(2) ⇒ (3): Immediate.
(3) ⇒ (4): The set{1} is Scott open inCX by 2.3(5).
(4) ⇒ (1): By 3.1(2), it suffices to show thatj(D) ≤ D∨j(C) for D ≥ C because

the other inequality holds asj is inflationary and monotone. We apply 2.7(2) using the
fact thatj(D) andD ∨ j(C) belong to↑C. ForE ∈ ↑C with 1 = E ∨ j(D), we need
to conclude that1 = E ∨D∨ j(C). Since1 = E ∨ j(D) ≤ j(E ∨D), Scott openness
of ∇j and regularity of↑C show that there is someB 0C E ∨ D such that already
1 = j(B). By 3.3, the second condition gives(B ⇒ C) ≤ j(C), and hence the first
condition gives1 = E ∨D ∨ (B ⇒ C) ≤ E ∨D ∨ j(C), as required. �

3.5 COROLLARY If X is Hausdorff then the topology ofKX consists of the nucleij
onCX with∇j ∈ (CX)∧.

4 The second Lawson dual of a Hausdorff locale

Our next goal is to show thatKX ∼= (CX)∧ if X is Hausdorff. If we show that every
nucleusj ∈ OKX is fitted, the result then follows directly from 3.5 and 1.1. However,
as discussed in the introduction, there is a more direct proof of the special case of 1.1
invoked here, which we now develop. Half of this argument has the fittedness condition
as an immediate consequence.

For a filterφ ⊆ CX, let

∆φ =
∨
{D◦ | D ∈ φ},

where the join is calculated in the frame of nuclei on the preframeCX. In order to
show that this join can be computed pointwise forX Hausdorff andφ ∈ (CX)∧, we
develop a variation of an argument previously applied to prove [3, Lemma 5.1]. Letκφ

denote the pointwise join:

κφ(C) =
∨
{D ⇒ C | D ∈ φ}.

4.1 LEMMA LetX be a Hausdorff locale,φ ∈ (CX)∧, andκ = κφ.

1. If D ∈ φ andE ∧D ≤ C thenE ≤ κ(C).

2. If C ≤ C ′ andE 0C κ(C ′) thenE ∧D 0C C ′ for someD ∈ φ.

PROOF (1): By definition of Heyting implication.
(2): By the assumption,1 = κ(C ′) ∨ (E ⇒ C). Hence, by directedness of

the defining join ofκ(C ′) and cocompactness of(E ⇒ C), there is someD′ ∈ φ
with 1 = (D′ ⇒ C ′) ∨ (E ⇒ C). It follows that E 0C (D′ ⇒ C ′). Because
(D′ ∨ C ′ ⇒ C ′) = (D′ ⇒ C ′) and becauseφ, being a filter, is upper closed, we may
assume thatD′ ≥ C ′ and hence thatD′ ∈ ↑C. Then, becauseφ is Scott open and
↑C is a regular frame, there is someD 0C D′ in φ. Finally, because the well-inside
relation is multiplicative [10], we conclude thatE ∧D 0C (D′ ⇒ C ′) ∧D′ ≤ C ′, as
required. �
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4.2 LEMMA If X is Hausdorff andφ ∈ (CX)∧ then∆φ = κφ.

PROOF It is enough to show thatκ = κφ is a nucleus. Becauseκ is a pointwise di-
rected join of nuclei, it is inflationary and, by the preframe distributive law, it preserves
finite meets. To show thatκ is idempotent, letE 0C κ(κ(C)). By two successive
applications of 4.1(2), we first conclude thatE ∧ D 0C κ(C) for someD ∈ φ and
then thatE ∧ D ∧ D′ ≤ C for someD′ ∈ φ. SinceD ∧ D′ ∈ φ asφ is a filter, we
conclude by 4.1(1) thatE ≤ κ(C). By 2.7(3), it follows thatκ(κ(C)) ≤ κ(C), as
required. �

4.3 LEMMA If X is Hausdorff andj ∈ OKX then∆∇j = j and hencej is fitted.

PROOF ∆∇j(C) =
∨
{D ⇒ C | j(D) = 1} ≤ j(C) by 4.2 and 3.3. In order

to prove the opposite inequality, letE 0C j(C). Then1 = j(C) ∨ (E ⇒ C) ≤
j(C) ∨ j(E ⇒ C) ≤ j(C ∨ (E ⇒ C)) = j(E ⇒ C). TakingD = (E ⇒ C), it
follows thatE ≤ ((E ⇒ C) ⇒ C) = (D ⇒ C) ≤ ∆∇j(C). The result then follows
by 2.7(3). �

The following is a simplification of the argument applied by Johnstone to prove
[12, Lemma 2.4], exploiting the fact that∆φ is calculated pointwise in our situation:

4.4 LEMMA If X is Hausdorff andφ ∈ (CX)∧ then∇∆φ = φ.

PROOF Let C ∈ ∇∆φ, that is,∆φ(C) = 1. Because1 ∈ φ andφ is Scott open,
we conclude by directedness of the defining join of∆φ that (D ⇒ C) ∈ φ for some
D ∈ φ. HenceC ≥ (D ⇒ C) ∧D is in φ too becauseφ is a filter, which shows that
∇∆φ ⊆ φ. Conversely, letC ∈ φ. Then(C ⇒ C) = 1 ∈ φ and hence∆φ(C) = 1,
that is,C ∈ ∇∆φ, which shows thatφ ⊆ ∇∆φ. �

There is no reason why the nucleusC◦ should belong toOKX if C ∈ φ, but it is
a corollary of the above development that the join of such nuclei does:

4.5 LEMMA If X is Hausdorff andφ ∈ (CX)∧ then∆φ ∈ OKX.

PROOF If j = ∆φ thenj is a nucleus with∇j = ∇∆φ = φ ∈ (CX)∧, and hence
the desired conclusion follows from 3.4. �

Hence:

4.6 THEOREM If X is a Hausdorff locale then the assignmentj 7→ ∇j is an isomor-
phismOKX → (CX)∧ with inverseφ 7→ ∆φ.

We have seen in 2.9 that the mapα : CX → (OX)∧ defined by

α(C) = {U ∈ OX | C ∨ U = 1}

is an isomorphism for any Hausdorff localeX. Dualizing this, we get an isomorphism
α∧ : (OX)∧∧ → (CX)∧.

4.7 COROLLARY The map∆ ◦ α∧ : (OX)∧∧ → OKX is an isomorphism for any
Hausdorff localeX.
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Recall that the natural mape : OX → (OX)∧∧ is defined by

e(U) = {φ ∈ (OX)∧ | U ∈ φ}.

4.8 COROLLARY If X is Hausdorff, thene : OX → (OX)∧∧ is an isomorphism if
and only ifβ : OX → (CX)∧ defined by

β(U) = α∧ ◦ e(U) = {C ∈ CX | C ∨ U = 1}

is an isomorphism.

4.9 LEMMA For any localeX,

OX
ε∗- OKX

(OX)∧∧
e

?

α∧
- (CX)∧.

∇
?

PROOF For anyU ∈ OX and anyC ∈ CX we have thatC ∈ ∇ε∗(U) if and only
if ε∗(U)(C) = 1 if and only if U ∨ C = 1 if and only if U ∈ α(C) if and only if
α(C) ∈ e(U) if and only if C ∈ α∧(e(U)). �

It follows that if X is Hausdorff thene : OX → (OX)∧∧ is a frame homomor-
phism, becauseε∗ is a frame homomorphism andα∧ and∇ are isomorphisms.

4.10 COROLLARY If X is a Hausdorff locale, thenεX : KX → X is a homeomor-
phism if and only ife : OX → (OX)∧∧ is an isomorphism.

PROOF Again becauseα∧ and∇ are isomorphisms. �

We now develop functoriality ofK and naturality ofε. For a continuous map
f : X → Y of Hausdorff locales, consider the diagram

OX
eOX- (OX)∧∧

α∧X- (CX)∧
∆X- OKX

O Y

f∗

6

eO Y

- (O Y )∧∧

(f∗)∧∧
6

α∧Y

- (C Y )∧
∆Y

- OKY.

(Kf)∗
6

The left square commutes by naturality ofe. Because the action of Lawson dualization
on morphisms is given by inverse images and because the preframe(OX)∧∧, being
isomorphic to the frameOKX, is in fact a frame, we conclude that the preframe ho-
momorphism(f∗)∧∧ is actually a frame homomorphism. Hence the right rectangle de-
fines a frame homomorphism(Kf)∗ : OKY → OKX, because its horizontal arrows
are isomorphisms, and hence a continuous mapKf : KX → KY . This construction
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is clearly functorial. By 4.9 and the fact that∇ is an isomorphism with inverse∆, the
horizontal arrows of the outer rectangle compose to give

OX
ε∗X- OKX

O Y

f∗
6

ε∗Y

- OKY,

(Kf)∗
6

X �εX KX

Y

f
?

�
εY

KY.

Kf
?

This proves:

4.11 THEOREM K is functorial on Hausdorff locales, making the canonical mapε
into a natural transformation.

5 Coreflection

We begin by showing that ifX is Hausdorff, thenX andKX have the same compact
closed sublocales.

5.1 LEMMA LetX be any locale.

1. For anyj ∈ OKX and allD,E ∈ CX, we have thatj(D) ∨ E = D ∨ j(E).

2. If C ∈ CX andj ∈ OKX thenε∗X(C) ∨ j = ε∗X(j(C)).

3. If D ∈ CX andε∗X(D) = 1 thenD = 1.

PROOF (1): This follows from two applications of 3.1(4). (2): For anyD ∈ CX, we
have that(ε∗X(C)∨j)(D) = C∨D∨j(D) = C∨j(D) = j(C)∨D = ε∗X(j(C))(D).
(3): If 1 = ε∗X(D) then1 = 1(D) = ε∗X(D)(D) = D ∨D = D. �

5.2 LEMMA For any localeX, if C ∈ CX thenε∗X(C) ∈ C KX.

PROOF We use 5.1 and 2.2. Assume thatε∗X(C)∨
∨

J = 1 for J ⊆ OKX directed.
Thenε∗X(

∨
J(C)) = 1 and hence

∨
J(C) = 1. Because joins inOKX are calculated

pointwise and the set{j(C) | j ∈ J} is directed, 2.3(5) givesj ∈ J with j(C) = 1.
But thenε∗X(C) ∨ j = ε∗X(j(C)) = ε∗X(1) = 1, as required. �

Hence the frame homomorphismε∗X (co)restricts to a preframe homomorphismh
as in the left square, whereiX andiKX are the preframe inclusions:

OX �iX
⊃ CX

OKX

ε∗X
?

�
iKX

⊃ C KX,

h
?

.........

CX
αX- (OX)∧

C KX

h−1
6
.........

αKX

- (OKX)∧.

(ε∗X)∧6

By 2.9, the mapαX : CX → (OX)∧ is an isomorphism ifX is Hausdorff, and hence
in this case there is a preframe homomorphismh−1 defined by commutativity of the
right square. The following is immediate:
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5.3 LEMMA For any localeX,

(OX)∧ �αX CX

(CX)∧
(iX)∧ ??

�
βX

OX.

iX
?

∩

HereβX = (αX)∧ ◦ eOX is the preframe homomorphism considered in Corollary 4.8,
and notice that(iX)∧ maps a filterφ ∈ (OX)∧ to its restriction(φ ∩ CX) ∈ (CX)∧.

5.4 LEMMA If X is Hausdorff thenh : CX → CKX is an isomorphism with inverse
h−1 : C KX → CX as defined above.

PROOF Because the mapsαX : CX → (OX)∧ and∇ : OKX → (CX)∧ are
isomorphisms andiKX : C KX → OKX is a monomorphism, it is enough to show
thatαX ◦ h−1 ◦ h = αX and∇ ◦ iKX ◦ h ◦ h−1 = ∇ ◦ iKX .

For the first equation, we use 5.1 to calculate, where we have omitted the inclu-
sionsiX andiKX :

αX ◦ h−1 ◦ h(C) = αX ◦ α−1
X ◦ (ε∗X)∧ ◦ αKX ◦ ε∗X(C)

= (ε∗X)∧ ◦ αKX(ε∗X(C))
= (ε∗X)∧({j ∈ CX | j ∨ ε∗X(C) = 1})
= (ε∗X)∧({j ∈ CX | ε∗X(j(C)) = 1})
= (ε∗X)∧({j ∈ CX | j(C) = 1})
= {U ∈ OX | ε∗X(U)(C) = 1}
= {U ∈ OX | C ∨ U = 1}
= αX(C).

For the second equation, we use the diagrams of 4.9 and 5.3 and rules of 5.1:

∇ ◦ iKX ◦ h ◦ h−1(j) = ∇ ◦ ε∗X ◦ iX ◦ α−1
X ◦ (ε∗X)∧ ◦ αKX(j)

= α∧X ◦ e ◦ iX ◦ α−1
X ◦ (ε∗X)∧ ◦ αKX(j)

= β ◦ iX ◦ α−1
X ◦ (ε∗X)∧ ◦ αKX(j)

= (iX)∧ ◦ (ε∗X)∧ ◦ αKX(j)
= (iX)∧ ◦ (ε∗X)∧({k ∈ OKX | j ∨ k = 1})
= (iX)∧({U ∈ OX | j ∨ ε∗X(U) = 1})
= {C ∈ CX | j ∨ ε∗X(C) = 1}
= {C ∈ CX | j(C) = 1}
= ∇ ◦ iKX(j),

as required. �
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5.5 COROLLARY If X is Hausdorff, thenεKX : KKX → KX is a homeomorphism.

5.6 REMARK As discussed in 2.5, all the results formulated for Hausdorff locales hold
for proto-Hausdorff locales with the exception of Proposition 5.7 below.

5.7 PROPOSITION If ε : KA → A is a monomorphism for every Hausdorff localeA,
then compactly generated Hausdorff locales form a coreflective subcategory of that of
Hausdorff locales.

PROOF If A is Hausdorff andKA → A is a monomorphism, thenKA is Hausdorff,
for the monomorphism property is equivalent to saying that the diagram

KA
∆- KA×KA

A

ε
?

∆
- A×A

ε× ε
?

is a pullback, and pullbacks of closed sublocales are closed. BecauseK is functorial on
Hausdorff locales and the canonical mapε is natural, any continuous mapf : X → A
from a compactly generated Hausdorff locale to a Hausdorff locale factors throughεA

asKf ◦ ε−1
X : X → KA, and such a factorization is unique becauseε : KA → A is a

monomorphism. �

If we don’t assume that the canonical map is a monomorphism but we more mod-
estly assume thatK preserves the Hausdorff property, we reach the same conclusion
with a more laborious argument, which we now develop. (Regarding locales satisfying
the proto-Hausdorff property, notice that forK to preserve this it is enough that every
compact sublocale ofKA be closed forA proto-Hausdorff, but we don’t know whether
this is the case.)

5.8 PROPOSITION If K preserves the Hausdorff property, then compactly generated
Hausdorff locales form a coreflective subcategory of that of Hausdorff locales.

PROOF By [14, Theorem IV-1.2(v)], it suffices to show thatKεA ◦ ε−1
KA = idKKA

for every Hausdorff localeA. Specializing the definition ofKf to f = εA and recalling
the definition ofh−1 given above, we get

OKA
eOKA- (OKA)∧∧

α∧KA- (C KA)∧
∆KA- OKKA

OA

ε∗A

6

eOA

- (OA)∧∧

(ε∗A)∧∧
6

α∧A

- (CA)∧

(h−1)∧
6

∆A

- OKA.

(KεA)∗
6
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Recalling that the horizontal arrows compose toε∗KA andε∗A, we calculate

(KεA ◦ ε−1
KA)∗

= (ε−1
KA)∗ ◦ (KεA)∗

= (ε−1
KA)∗ ◦ (KεA)∗ ◦ ∆A ◦ ∆−1

A

= (ε−1
KA)∗ ◦ ∆KA ◦ (h−1)

∧ ◦ ∆−1
A (reworking(KεA)∗ ◦ ∆A)

= e−1
OKA ◦ (α∧KA)−1 ◦ ∆−1

KA ◦ ∆KA ◦ (h−1)
∧ ◦ ∆−1

A (applying 4.9 to(ε−1
KA)∗)

= e−1
OKA ◦ (α∧KA)−1 ◦ (h−1)

∧ ◦ ∆−1
A (cancelling∆−1

KA ◦ ∆KA)

= e−1
OKA ◦ (α∧KA)−1 ◦ (h∧)−1 ◦ ∆−1

A (reworking(h−1)
∧

)

= (∆A ◦ h∧ ◦ α∧KA ◦ eOKA)−1 (by contravariance of(−)−1).

Hence it suffices to show thath∧ ◦ α∧KA ◦ eOKA = ∇A. We calculate using 5.1:

C ∈ h∧ ◦ α∧KA ◦ eOKA(j) ⇐⇒ h(C) = ε∗A(C) ∈ α∧KA ◦ eOKA(j)
⇐⇒ αKA(ε∗A(C)) ∈ eOKA(j)
⇐⇒ j ∈ αKA(ε∗A(C)))
⇐⇒ ε∗A(C) ∨ j = 1 ⇐⇒ ε∗A(j(C)) = 1
⇐⇒ j(C) = 1 ⇐⇒ C ∈ ∇A(j),

as required. �

References

[1] M.H. Escard́o. Properly injective spaces and function spaces.Topology Appl.,
89(1–2):75–120, 1998.

[2] M.H. Escard́o. The patch frame of the Lawson dual of a stably continuous frame.
Unpublished research note, School of Computer Science, St Andrews University,
available at the author’s web page at his current institution, May 2000.

[3] M.H. Escard́o. The regular-locally-compact coreflection of stably locally compact
locale.Journal of Pure and Applied Algebra, 157(1):41–55, 2001.

[4] M.H. Escard́o. Notes on compactly generated locales. Unpublished research note,
School of Computer Science, University of Birmingham, available at the author’s
web page, 2001–2005.

[5] M.H. Escard́o. Joins in the frame of nuclei.Applied Categorical Structures,
11(2):117–124, 2003.

[6] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott.
Continuous Lattices and Domains. Cambridge University Press, 2003.

[7] K.H. Hofmann and J.D. Lawson. On the order-theoretical foundation of a theory
of quasicompactly generated spaces without separation axiom.J. Austral. Math.
Soc. Ser. A, 36(2):194–212, 1984.

17



[8] K.H. Hofmann and M. Mislove. Local compactness and continuous lattices. In
Continuous Lattices, volume 871 ofLect. Notes Math., pages 209–248, 1981.

[9] J.R. Isbell. Atomless parts of spaces.Math. Scand., 31:5–32, 1972.

[10] P.T. Johnstone.Stone Spaces. Cambridge University Press, 1982.

[11] P.T. Johnstone. Open locales and exponentiation. InMathematical applications
of category theory (Denver, Col., 1983), pages 84–116. Amer. Math. Soc., 1984.

[12] P.T. Johnstone. Vietoris locales and localic semilattices. InContinuous lattices
and their applications (Bremen, 1982), pages 155–180. Dekker, 1985.

[13] P.T. Johnstone.Sketches of an Elephant: a Topos Theory Compendium. Oxford
University Press, 2002.

[14] S. Mac Lane.Categories for the Working Mathematician. Springer, 1971.

[15] J.J.C. Vermeulen. Some constructive results related to compactness and the
(strong) Hausdorff property for locales. InCategory theory (Como, 1990), pages
401–409. Springer, 1991.

Mart́ın H. Escard́o
School of Computer Science, University of Birmingham
Birmingham B15 2TT, UK

18


