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In Domain Realizability, not all Functionals on C[—1, 1]
are Continuous
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Abstract. In this note we exhibit a continuity principle for real-valued functions on C[—1,1]
that is not validated by realizability over domains although it is validated by Kleene’s func-
tional realizability corresponding to Weihrauch’s theory of type 2 effectivity.
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1 Introduction

Tt is well known (see e.g. [1]) that in the function realizability topos RT(K3), where
K is the so-called 2! Kleene algebra with underlying set NV, it holds that

“all functions from C[—1,1] to R are continuous”.

This follows from the validity in RT(K3) of the statement that “all functions from NN
to N are continuous”, which in turn is equivalent to the statement that “all functions
between complete separable metric spaces are continuous” (see e.g. [3]). It is also
well known, from e.g. [3], that in realizability over Pw the statement “all functions
from NN to N are continuous” is not valid internally, despite the fact that from the
external point of view all morphisms from NN to N are actually continuous. This
remains true when considering realizability over T* or some universal Scott domain.
However, one may show, using the so-called Berger—-Gandy functional that computes
a uniform modulus of continuity for total functionals from Cantor space 2" to N, that
in RT(T%) it holds that

“all functions from R"™ to R are continuous”
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for all natural numbers n. Thus, there arises quite naturally the question whether
domain realizability validates continuity of real-valued functionals on infinite dimen-
sional Banach spaces. The aim of this note is to answer this question negatively
for the space C[—1, 1] of continuous functionals from the closed interval [—1,1] to R
under the supremum norm. However, the proposition “there is a discontinuous func-
tion from C[—1,1] to R” does not hold either as from it one could derive the limited
principle of omniscience (see [3]) which fails in RT(T*) as there all maps from 2V to
2 are continuous.

We wish to thank P. Lietz for asking the question we answer in this note and
A. Bauer and A. Simpson for discussions about the problem and our preliminary
attempts to solve it.

2 The Theorem

Before proceeding to the statement and the proof of the theorem, we review some
terminology and notation. For general information about realizability and domain
theory see [1] and [2], respectively.

As T% is a universal domain for the category Domc,, of coherently complete count-
ably algebraic cpo’s (with L) we know that RT(T*) and RT(Domeop) are equivalent
categories. Actually, all our considerations will take place within PER(Domcy), the
category of per’s on domains in Domg,y, and equivariant continuous maps as mor-
phisms. But all our arguments apply also for the case when Domcy is replaced by
the more popular category Dom of Scott domains.

We write C for partial Cantor space and B for partial Baire space, i.e. [N — 3]
and [N — N |, respectively, where 3 = {—1,0,1}. A canonical admissible represen-
tation of [—1,1] by the total Cantor space is given by assigning z = Y -~ 7, 27" €
[-1,1] to v: N — 3 in which case we write v IF .

We now proceed to the formulation and proof of our theorem.

Theorem 2.1. The statement

“not all functions from C[—1,1] to R are continuous”

is valid in RT(TY).
As usual, a functional F' is called continuous iff

Vf € C[-1,1].¥n € N.3k € NVg € C[-1,1]. ||f—g|| < 27% = |F(f)—F(g)| < 27"

where [|.|| is the supremum norm on C[—1, 1].

Proof. If RT(T*) would validate “all functions from C[—1,1] to R are contin-
uous” then there would exist a continuous functional M: [[C — B] — B] — N
satisfying the specification that whenever ¢ I+ F' then M(¢) =n € N with

(1) |F(f) — F(0)] < 27! for all fe C[1,1] with ||f|] <27 ™.

For deriving a contradiction from this assumption first recall the following fact from
functional analysis.

Lemma 2.2. Consider the sequence Fy,: C[—1,1] — R of linear continuous func-
tionals where Fy,(f) = f(0) — f(27%). For all k there is an f € C[~1,1] with ||f|| = 1
and |Fy(f)| = 2. However, the sequence Fy, converges to O :=\f € C[—1,1].0 in the
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sequential topology, i.e. limg_,oo Fi(fx) = 0 for any convergent sequence fy in the
norm topology of C[—1,1].

For ¢ > 0 the sequence c - Fy also converges to O in the sequential topology and
for every k there is an f € C[—1,1] with ||f]|| = 1 such that |c- Fy(f)| = 2¢. Thus,
the optimal modulus of continuity for c - Fy, w.r.t. % at O 1is precisely 4%.

Proof. For every continuous function f with f(0) = 1 and f(27%) = —1 we
have Fi(f) = 2. There are plenty of continuous functions f with ||f|| = 1 satisfying
f(0) =1 and f(27%) = —1. For such f we have ||f|| =1 and |Fy(f)| = 2.

Now suppose that fr converges to some f in the norm topology. Then by the
triangle inequality we have

[Eu(f)l < 1fe(0) = FO)] + [£(0) = F27F) [+ [f(27F) = fr(279)]
< 1FO) = f@E) 201 — fill

and, therefore, as the right hand side goes to 0 when k goes to oo this holds also
for the left hand side of the inequality. Thus, the sequence Fj, converges to O in the
sequential topology. From these considerations the corresponding statement for the
sequence c¢ - Fj follows immediately.

Thus, for every ¢ > 0 there is an f € C[—1,1] with ||f|| = &= and |c- Fx(f)| = 4
from which it follows that

“eOLIL (1 <5 = e AP < )

holds prec1sely for § < . Thus, the optimal modulus of continuity for ¢- Fj w.r.t.
at O is R D

Furthermore, we need the following.
Lemma 2.3. There is a continuous function znorm: C — C such that

(1) if alF 2 € [-1,1] then znorm(«) IF = and
(2) if alF 0 then znorm(a) = 0 IF 0.
That is, znorm realizes the identity on [—1,1] and sends all realizers of 0 to 0°° =
An: N.O, the canonical realizer for 0.
Proof. The function znorm is given by the following functional program
znorm(0:z) = 0 : znorm(z)
znorm(1:—1: a:) =znorm(0:1:2z) = 0:znorm(1:x)
znorm(—1:1:2) = znorm(O —1:2)=0:znorm(—1:x)
znorm(1:0 :v) =1:0:2
znorm(l:1:2)=1:1:x
(—1:0: a:)z—l:O:J;

znorm(—1:—1:2)=—-1:—-1:x

znorm

which sends infinite streams to infinite streams as it reads at most two items of input
before producing some item of output.

As znorm(1: —1%°) = 0:znorm(1:—1*°) and znorm(—1:1°°) = 0:znorm(—1:1%°)
it follows that znorm(1: —1°°) = 0°° = znorm(—1:1°) and, therefore, all realizers of
0, namely 0%, 0% :1: -1 and 0% : —1:1°°, are mapped to 0°° by znorm. (]
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Now suppose that M: [[C — B] — B] — N is a continuous domain function
satisfying condition () above and the requirement that whenever ¢ I+ F': C[-1,1] —
R then M(¢) =n € N. Let ¢ = Ac: C.0°: C — B and n:= M(¢).

Using Lemma 2.3 there is a function p: B — B such that

(1) p realizes the function 7: R — R which is the identity on [—1,1] and sends all
other numbers to 1 if they are positive and to —1 if they are negative

(2) p(a) = 0% whenever « I+ 0.

Let « be a realizer for 2" € R and «y, a sequence in C such that oy, I- 27F for all k
and limg_, ax = 0% in C. Counsider the sequence ¢y in [C — B] — B with

ok (f) = p(mult(y, sub(f(0%), f ()

where sub and mult realize subtraction and multiplication on R, respectively. Ob-
viously, the domain-theoretic functions ¢y realize the continuous maps r o (2" - F})
from C[—1,1] to R where the Fj, are as in Lemma 2.2 and r is as in (1) above. It
follows from Lemma 2.2 with ¢ = 2™ that for all k£ the optimal modulus of continuity
of 7o (2" Fy,) wr.t. & at Az.0 is 2"*2. Thus, we have M(¢y) > n + 2 for all k. As
the ay converge to 0°° the ¢y, converge to some ¢’ with

(3) ¢'(h) =0 for all h € C — B realizing some function in C[—1,1] and
(4) M(¢') > n+ 2 as the M(¢y) converge to M(¢').
Then ¢:=Ah: [C — BJ. (0% M ¢/(h)) is a continuous function below ¢ and ¢’ and

still realizes O. Thus M(¢) is a natural number and M(¢) C M(¢), M(¢'). Thus,

we have M (¢) = n and, therefore, n C M (¢’) contradicting (4) and hence concluding
the proof of Theorem 2.1. O

We think that the above theorem can be extended to other infinite dimensional
spaces like Hilbert space etc. We consider our result as a contribution to the question
of comparing domain realizability with function realizability. The former is more
suitable for extracting functional programs from constructive proofs whereas the latter
supports comfortable principles like continuity axioms for a wide class of spaces.
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