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Abstract. We show how two iterated products of selection functions can both be used in con-
junction with system T to interpret, via the dialectica interpretation and modified realizability, full
classical analysis. We also show that one iterated product is equivalent over system T to Spector’s
bar recursion, whereas the other is T-equivalent to modified bar recursion. Modified bar recursion
itself is shown to arise directly from the iteration of a different binary product of ‘skewed’ selection
functions. Iterations of the dependent binary products are also considered but in all cases are shown
to be T-equivalent to the iteration of the simple products.

§1. Introduction. Gödel’s [13] so-called dialectica interpretation reduces the
consistency of Peano arithmetic to the consistency of the quantifier-free calcu-
lus of functionals T. In order to extend Gödel’s interpretation to full classical
analysis PAω + CA, Spector [19] made use of the fact that PAω + CA can be
embedded, via the negative translation, into HAω + ACN + DNS. Here PAω

and HAω denote Peano and Heyting arithmetic, respectively, formulated in the
language of finite types, and

CA : D f NÑB@nN( f (n)Ø A(n))
is full comprehension,

ACN : @nNDxX A(n, x)Ñ D f@nA(n, f n)
is countable choice, and

DNS : @nN  B(n)Ñ   @nB(n),
is the double negation shift, with A(n) and A(n, x) standing for arbitrary formu-
las, and B(n) � Dx A(n, x). Since HAω +ACN, excluding the double negation
shift, has a straightforward (modified) realizability interpretation [21], as well
as a dialectica interpretation [1, 13], the remaining challenge is to give a com-
putational interpretation to DNS.

A computational interpretation of DNS was first given by Spector [19], via the
dialectica interpretation. Spector devised a form of recursion on well-founded
trees, nowadays known as bar recursion, and showed that the dialectica inter-
pretation of DNS can be witnessed by such kind of recursion. A computational
interpretation of DNS via realizability only came recently, first in [2], via a non-
standard form of realizability, and then in [4, 5], via Kreisel’s modified realiz-
ability. The realizability interpretation of DNS makes use of a new form of bar
recursion, termed modified bar recursion.
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It has been shown in [5] that Spector’s bar recursion is definable in system T
extended with modified bar recursion, but not conversely, since Spector’s bar
recursion is S1-S9 computable in the model of total continuous functionals, but
modified bar recursion is not.

In the present paper we revisit these functional interpretations of classical
analysis from the perspective of the newly developed theory of selection func-
tions [8, 9, 10, 11]. Selection functionals are functionals of type (X Ñ R) Ñ X,
for arbitrary finite types X, R. We think of mappings p : X Ñ R as generalised
predicates, and of functionals ε : (X Ñ R) Ñ X as witnessing, when possible,
the “non-emptiness” of any given such predicate. For instance, if R = B is the
set of booleans, Hilbert’s ε-constant can be viewed as a selection function. Just
as ε-terms in Hilbert’s calculus can be used to define the existential quantifier,
so can any selection function ε : (X Ñ R) Ñ X be used to define a generalised
quantifier φ : (X Ñ R)Ñ R as

φ(p) R
= p(ε(p)).

Moreover, just like the usual quantifiers DX and @Y can be nested to produce a
quantifier on the product space X�Y, so can generalised quantifiers and selec-
tion functions. We prefer to think about the nesting of selection functions (and
quantifiers) as a product operation, since it transform selection functions over
spaces X and Y into a new selection function on the product space X � Y (cf.
[11]).

In this article we define two different iterations of the binary product of se-
lection functions, one which we call implicitly controlled and the other which we
call explicitly controlled. We show that:

 Modified bar recursion is T-equivalent to the implicitly controlled product

of selection functions.

 Spector’s bar recursion is T-equivalent to the explicitly controlled product

of selection functions.

 The two different products can be used to interpret DNS directly via mod-

ified realizability and the dialectica interpretation, respectively.

 The implicitly controlled product of selection functions is strictly stronger

than the explicitly controlled one.

 Apparently stronger iterations of the dependent products are in fact T-

equivalent to the iterations of the simple products.

§2. Preliminaries. Before we present our main results, let us first define the
formal systems used, and give an introduction to our recent work on selection
functions.

2.1. Heyting arithmetic and system T. In this section we define the formal
system used to prove the inter-definability results. These include Heyting arith-
metic in all finite types and extensions including bar induction and a continuity
principle.

DEFINITION 2.1 (Finite types). The set of all finite types T are defined induc-
tively as

 B (booleans) and N (integers) are in T
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 If X and Y are in T then X�Y (product) and X Ñ Y (functions) are in T

 If X is in T then X� (finite sequence) is in T .

We will also make informal use of the following type construction: Given a sequence
of types (Xi)iPN we also consider ΠiPNXi as a type. The main purpose of this is to
make the constructions more readable, since we can keep track of the positions which
are being changed. A formal extension of system T with such type construction has
been considered by Tait [20], hence we also hope that our presentation below will extend
smoothly to a more general setting, although in this paper we focus on the standard
version of system T.

We use X, Y, Z for variables ranging over the elements of T . We often write
ΠiXi for ΠiPNXi, and also Πi¥kXi for ΠiXi+k.

Let HAω be usual Heyting arithmetic in all finite types with a fully exten-
sional treatment of equality, as in the system E-HAω of [21]. Its quantifier-free
fragment is the usual Gödel’s system T, also extended with sequence types.
Gödel’s primitive recursion for each sequence of types (Xi)iPN P T is given by

R f g0
X0= g

R f g(n + 1)
Xn+1
= f n(R f gn)

where R has finite type Πn(Xn Ñ Xn+1) Ñ X0 Ñ ΠiXi. If the reader prefers,
however, she can assume that all Xi are equal X and read ΠiPNXi as Xω. We
also assume that we have a constant 0X of each finite type X, and the usual
constructors and destructors such as xtX , sYy : X � Y and πi(xs

X0
0 , sX1

1 y) = si,
where i = t0, 1u, for instance. For the newly introduced sequence types we
have that if t : ΠiXi then ti : Xi; and if t : Xi then λi.t : ΠiXi. If s : Πi nXi, we
write si : Xi for the i-th element of the sequence, for i   n. If s : Πi n(Xi � Yi)
is a sequence of pairs, we write s0 : Πi nXi and s1 : Πi nYi for the projection
of the sequence on the first and second coordinates, respectively. If α has type
ΠiPNXi we use the following abbreviations

αn � λi.α(n + i), (the n-left shift of α, hence αn : ΠiXn+i)

qn(α) � q(αn), (so qn : ΠiXi Ñ R if q : ΠiXn+i Ñ R)

α[k, n] � xα(k), . . . , α(n)y, (finite segment from position k to n)

[α](n) � α[0, n� 1], (initial segment of α of length n)

α, n � xα(0), . . . , α(n� 1), 0, 0, . . .y, (infinite extension of [α](n) with 0’s)

where in the last case the type of 0 at the i-th coordinate is the same type of
α(i). If x has type Xn and s has type Πi nXi then s � x is the concatenation of s
with x, which has type Πi n+1Xi. Similarly, if x has type X0 and α has type
ΠiXi+1 then x � α has type ΠiXi.

In the following we shall assume that certain types are discrete. Semantically,
in the model of total continuous functionals, discreteness means that singletons
are open or that all points are isolated. Syntactically, the following grammar
produces discrete types in that model (along with compact types) [8].
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DEFINITION 2.2 (Discrete and compact types). Define the two subsets of T in-
ductively as follows:

compact ::= B | compact� compact | discrete Ñ compact

discrete ::= B | N | discrete� discrete | discrete� | compact Ñ discrete.

For the first part of the paper, up to the end of Section 5, we work with a
model independent notion of definability. Formally, given a term t in system T,
we view an equation F(x) = t(F, x) as defining or specifying a functional F. We
do not worry whether such an equation has a solution in any particular model
of HAω, or whether it is unique, when it has a solution. After this general
model-independent development we consider particular models in the final
section, and prove some non-definability results. The two main models we
will consider are that of partial/total continuous functionals [17], and strongly
majorizable functionals [7].

DEFINITION 2.3. We say that a functional G is T-definable from a functional F
(written G ¤T F) over a theory S if there exists a term s in system T such that s(F)
satisfies the defining equation of G provably in S . We say that F and G are T-equivalent
over S , written F =T G, if G ¥T F and F ¥T G.

When stating in a theorem or proposition that G is T-definable in F, we will
explicitly write after the theorem/proposition number the theory S that is need
for the verification. In a few cases this theory will be an extension of HAω with
the following two principles: Spector’s condition

SPEC : @ωΠiXiÑN@αΠiXiDn(ω(α, n)   n),
and the scheme of relativised bar induction BI$''''&''''%

S(x y)
^

@αPS DnP([α](n))
^

@s P S(@x[S(s � x)Ñ P(s � x)]Ñ P(s))

,////.////-Ñ P(x y),

where S(s) and P(s) are arbitrary predicates in the language of HAω, and α P S
and s P S are shorthands for @nS([α](n)) and S(s) respectively. When P(s) is
restricted to be quantifier-free we write BIQF.

We note that SPEC follows from the axiom of continuity

CONT : @qΠiXiÑR@αDn@β([α](n)
Πi nXi= [β](n)Ñ q(α) R

= q(β))

with R discrete, but it also holds in the model of strongly majorizable function-
als [7].

2.2. Selection functions and generalised quantifiers. In [11] we have stud-
ied the properties of functionals having the type (X Ñ R) Ñ R, and called
these generalised quantifiers. When R = B we have that (X Ñ B) Ñ B is the
type of the usual logical quantifiers @, D. We also showed that some generalised
quantifiers φ : (X Ñ R) Ñ R are attainable, in the sense that for some selection
function ε : (X Ñ R)Ñ X, we have

φp = p(εp)



BAR RECURSION AND PRODUCTS OF SELECTION FUNCTIONS 5

for all (generalised) predicates p. In the case when φ is the usual existential
quantifier, for instance, ε corresponds to Hilbert’s epsilon term. Since the types
(X Ñ R) Ñ R and (X Ñ R) Ñ X will be used quite often, we abbreviate them
as KRX and JRX, respectively. Moreover, when R is fixed, we often simply
write KX and JX, omitting the subscript R. In [11] we also defined products of
quantifiers and selection functions.

DEFINITION 2.4 (Product of selection functions and quantifiers). Given gener-
alised quantifiers φ : KX and ψ : KY, define the product quantifier (φbψ) : K(X�Y)
as

(φb ψ)(pX�YÑR)
R
= φ(λxX .ψ(λyY.p(x, y))).

Also, given selection functions ε : JX and δ : JY, define the product selection function
(εb δ) : J(X�Y) as

(εb δ)(pX�YÑR)
X�Y
= (a, b(a))

where

a X
= ε(λxX .p(x, b(x)))

b(xX)
Y
= δ(λyY.p(x, y)).

One of the results we obtained is that the product of attainable quantifiers is
also attainable. This follows from the fact that the product of quantifiers corre-
sponds to the product of selection functions, as made precise in the following
lemma.

LEMMA 2.5 ([11], lemma 3.1.2). Let R be fixed. Given a selection function ε : JX,
define a quantifier ε : KX as

εp = p(εp).

Then for ε : JX and δ : JY we have εb δ = εb δ.

Given a finite sequence of selection functions or quantifiers, the two binary
products defined above can be iterated so as to give rise to finite products of
selection functions and quantifiers. We have shown that such a construction
also appears in game theory (backward induction), algorithms (backtracking),
and proof theory (interpretation of the infinite pigeon-hole principle) – see [11]
for details.

In the following (Sections 3 and 4) we will describe two possible ways of
iterating the binary product of selection function an infinite, or unbounded,
number of times.

§3. Explicitly Controlled Product. The finite product of selection functions
of Definition 2.4 can be infinitely iterated in two ways. The first, which we
define in this section is via an explicitly controlled iteration, which we will show
to correspond to Spector’s bar recursion. In the following section we also define
an implicitly controlled iteration, which we will show to correspond to modified
bar recursion.
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DEFINITION 3.1 (eps). Let ε : Πk JXk be a sequence of selection functions. Define
their explicitly controlled infinite product as

epsl
n(ε)(q)

ΠiXi+n
=

#
0 if l(q(0))   n

(εn b epsl
n+1(ε))(q) otherwise,

(1)

where q : ΠiXi+n Ñ R and l : R Ñ N. We call l the length function since it controls
the length of the recursive path.

Given a sequence of selection functions ε : Πk JXk, at stage n we apply the
binary product of selection functions to εn and the result of the recursive call at
stage n + 1. That is done until the condition l(q(0))   n is met. In order to see
why such a condition is eventually met (assuming continuity, for instance) it is
best to look at the following equivalent formulation of eps.

LEMMA 3.2 (HAω). Let q : ΠiXi+n Ñ R and l : R Ñ N. The functional eps can
be equivalently defined as

epsl
n(ε)(q)

ΠiXi+n
=

#
0 if l(q(0))   n

c � epsl
n+1(ε)(qc) otherwise,

where c = εn(λx.epsl
n+1(ε)(qx)); or even more generally

epsl
n(ε)(q)(i)

Xi+n
=

#
0 if Ds ¨ t(l(qs(0))   n + |s|)

εi+n(λx.epsl
i+n+1(ε)(qt�x)) otherwise,

where t = [epsl
n(ε)(q)](i).

PROOF. The first equivalent formulation is obtained by simply unfolding of
binary product of selection functions (Definition 2.4). For the second formula-
tion one uses course-of-values induction on i noticing that as soon as the condi-
tion l(qs(0))   n + |s| is satisfied for some s then the value of epsl

n(ε)(q)(i) will
be 0 for i ¥ |s|. %

The fact that eps exists in the model of total continuous functionals, and is
in fact uniquely characterized by its defining equation, can be seen as follows.
First, note that the epsn(ε)(q) is an infinite sequence, say α : ΠiXi+n. Intuitively,
at each recursive call the functional q gets information about one more element
of its input sequence. Assuming continuity we will have that l � q : Πi+nXi Ñ N

will eventually always return a fixed value, no matter what the rest of the input
sequence is. This means that as n increases we will eventually have l(q(0))  
n. It is perhaps surprising that such a functional also exists in the model of
strongly majorizable functionals [7], which contains discontinuous functionals!
Following the construction of Bezem [7] one can prove this directly, but this
result will also follow from our result that eps is T-definable from Spector’s bar
recursion (Section 3.3).

We also define the corresponding explicitly controlled product of quantifiers
as follows:
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DEFINITION 3.3 (epq). Let φ : ΠkKXk be a sequence of quantifiers. Their explic-
itly controlled infinite product is defined as

epql
n(φ)(q)

R
=

#
q(0) if l(q(0))   n

(φn b epql
n+1(φ))(q) otherwise,

where q : ΠiXi+n Ñ R and l : R Ñ N. Unfolding the definition of the binary product
of quantifiers we have

epql
n(φ)(q)

R
=

#
q(0) if l(q(0))   n

φn(λxXn .epql
n+1(φ)(qx)) otherwise.

(2)

Note that under the assumption of epq we can derive Spector’s condition
SPEC. The same proofs as given in lemma 3C of [14], observing that the instance
of bar recursion needed there can be easily defined from epq.

LEMMA 3.4. HAω + (2) $ SPEC.

First, we show that in terms of T-definability epq is stronger than eps. Al-
though care has to be taken when spelling out the details, the proof essen-
tially makes use of the fact that each selection function ε defines a quantifier,
as φ(p) = p(ε(p)) (cf. Lemma 2.5).

THEOREM 3.5 (HAω + BI). epq ¥T eps.

PROOF. In order to define eps for the types (Xi, R) we shall use epq for the
types (Xi, ΠiXi). The explicitly controlled product of quantifiers is related to
Spector’s general form of bar recursion as the explicitly controlled product of
selection functions is related to Spector’s “restricted form” of bar recursion (cf.
[18, 19]). Hence, the proof presented here that epq defines eps is essentially the
same as Spector’s proof that his restricted form of bar recursion follows from
the general form. Let us abbreviate R1 = ΠiXi. Given εi : JRXi and q : ΠiXi Ñ R
define φ

ε,q
i : KR1Xi as

φ
ε,q
i (pXiÑR1)

R1
= p(εi(λxXi .q(p(x)))).(3)

Given α : ΠiXi let αn : Πi¥nXi be
αn(i) = α(i + n).

The construction αn drops the first n elements of α. Given q : Πi¥nXi Ñ R let
qn : ΠiXi Ñ R be

qn(αΠiXi )
R
= q(αn).

Hence, qn behaves as q except that it ignores the first n elements of its input
sequence. We claim that eps can be defined from epq as

epsl
n(ε)(q)

ΠiXi+n
= (epq

l�qn

n (φε,qn
)(λαΠiXn+i .0Πi nXi � α))n.(4)

We consider two cases. If l(q(0Πi¥nXi ))   n then we also have l(qn(0ΠiXi ))   n.
Therefore

epsl
n(ε)(q)(i)

(4)
= epq

l�qn

n (φε,qn
)(λα.0Πi nXi � α)(n + i)

(2)
= 0Xn+i .
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So, epsl
n(ε)(q) = 0ΠiXn+1 as desired.

On the other hand, if l(q(0Πi¥nXi )) ¥ n, since this implies l(qn(0ΠiXi )) ¥ n, and
we have:

epsl
n(ε)(q)

(4)
= (epq

l�qn

n (φε,qn
)(λα.0Πi nXi � α))n

(2)
= (φ

ε,qn

n (λxXn .epq
l�qn

n+1(φ
ε,qn

)((λα.0Πi nXi � α)x)))n

= (φ
ε,qn

n (λxXn .epq
l�qn

n+1(φ
ε,qn

)(λα.0Πi nXi � x � α)))n

(3)
= (epq

l�qn

n+1(φ
ε,qn

)(λα.0Πi nXi � c � α))n

(+)
= (((0 � c)@ epq

l�(qc)n+1

n+1 (φε,(qc)n+1
)(λα.0Πi n+1Xi � α)))n

= (c � (epq
l�(qc)n+1

n+1 (φε,(qc)n+1
)(λα.0Πi n+1Xi � α))n+1)

(4)
= (c � epsl

n+1(ε)(qc))

where

c = εn(λxXn .qn(epq
l�qn

n+1(φ
ε,qn

)(λα.0Πi nXi � x � α)))

(+)
= εn(λxXn .qn((0 � x)@ epq

l�(qx)n+1

n+1 (φε,(qx)n+1
)(λα.0Πi n+1Xi � α)))

= εn(λxXn .(qx)n+1(epq
l�(qx)n+1

n+1 (φε,(qx)n+1
)(λα.0Πi n+1Xi � α)))

= εn(λxXn .qx(epq
l�(qx)n+1

n+1 (φε,(qx)n+1
)(λα.0Πi n+1Xi � α))n+1)

(4)
= εn(λxXn .qx(epsl

n+1(ε)(qx))).

Property

(+) epq
l�qn

n+1(φ
ε,qn

)(λα.0 � x � α) = (0 � x)@ epq
l�(qx)n+1

n+1 (φε,(qx)n+1
)(λα.0 � α)

follows by BI + SPEC. We take S(s) = true and

epq
l�qn

n+j+1(φ
ε,qn

)(λα.0 � x � s � α) = (0 � x)@ epq
l�(qx)n+1

n+j+1 (φε,(qx)n+1
)(λα.0 � s � α)loooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooon

P(s)

where s : Πn i¤n+jXi, so |s| = j, and q : Πi¥nXi Ñ R so qn : ΠiXi Ñ R.
By SPEC, for any α : Πi¡nXi there is a point j such that

(l � qn)(0 � x � [α](j) � β) = l(q(x � [α](j) � β))

  n + j + 1.

For such j and s = [α](j) it is easy to see that P(s) holds as both sides of P(s)
are equal to 0 � x � s � 0. That proves the base case of BI.
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Assume now that (IH) @yP(s � y) holds and let us prove P(s). We have

epq
l�qn

n+j+1(φ
ε,qn

)(λα.0 � x � s � α)

(2)
= φ

ε,qn

n+j+1(λy.epq
l�qn

n+j+2(φ
ε,qn

)(λα.0 � x � s � y � α))

(IH)
= φ

ε,qn

n+j+1(λy.((0 � x)@ epq
l�(qx)n+1

n+j+2 (φε,(qx)n+1
)(λα.0 � s � y � α)))

(3)
= (0 � x)@ epq

l�(qx)n+1

n+j+2 (φε,(qx)n+1
)(λα.0 � s � c � α)

= (0 � x)@ epq
l�(qx)n+1

n+j+2 (φε,(qx)n+1
)(λα.0 � s � c̃ � α)

= (0 � x)@ φ
ε,(qx)n+1

n+j+1 (λy.epq
l�(qx)n+1

n+j+2 (φε,(qx)n+1
)(λα.0 � s � y � α))

(3)
= (0 � x)@ epq

l�(qx)n+1

n+j+1 (φε,(qx)n+1
)(λα.0 � s � α)

where

c := εn+j+1(λy.qn((0 � x)@ eps
l�(qx)n+1

n+j+2 (φε,(qx)n+1
)(λα.0 � s � y � α)))

= εn+j+1(λy.(qx)n+1(eps
l�(qx)n+1

n+j+2 (φε,(qx)n+1
)(λα.0 � s � y � α)))

=: c̃.
That concludes the proof. %

Hence, we have shown that eps is T-definable in epq. The converse, that epq
is T-definable in eps has been recently shown in [18].

3.1. Dialectica interpretation of classical analysis. In order to find witnesses
for the dialectica interpretation of DNS, and hence full classical analysis, Spec-
tor arrived at the following system of equations

n N
= ωα,

α(n) X
= εn(p),

p(α(n)) R
= qα,

(5)

where εn : JRX and q : (N Ñ X) Ñ R and ω : (N Ñ X) Ñ N are given and
n : N and α : N Ñ X and p : X Ñ R are the unknowns. We now show how eps
can be used to solve Spector’s equations. We first solve a slightly different set
of equations, and as a corollary we obtain a solution to Spector’s original one.

THEOREM 3.6 (HAω + (1)). Let q : ΠiXi Ñ R and l : R Ñ N and ε : Πi JRXi be
given. Define

α = epsl
0(ε)(q)

pn(x) = epsl
n+1(ε)(q[α](n)�x).

For n ¤ l(q(α)) we have

α(n) Xn= εn(pn)

pn(α(n))
R
= qα.
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PROOF. This is essentially Spector’s proof (cf. lemma 11.5 of [16]). First, let
us show by induction that for all n the following holds:

(i) α = [α](n) � epsl
n(ε)(q[α](n)).

If n = 0 this follows by the definition of α. Assume this holds for n, we wish to
show it also holds for n + 1. Consider two cases.

(a) If l(q[α](n)(0)) = l(q(α, n))   n then epsl
n(ε)(q[α](n)) = 0 and hence

α
(IH)
= α, n = α, n + 1.

Therefore, l(q(α, n + 1)) = l(q(α, n))   n   n + 1. So,

[α](n + 1) � epsl
n+1(ε)(q[α](n+1)) = α, n + 1 = α, n = α.

(b) If, on the other hand, l(q[α](n)(0)) = l(q(α, n)) ¥ n, then

α
(IH)
= [α](n) � epsl

n(ε)(q[α](n)) = [α](n) � c � epsl
n+1(ε)(q[α](n)�c),

where c = α(n). Hence α = [α](n + 1) � epsl
n+1(ε)(q[α](n+1)). That proves (i).

Now, assume n ¤ l(q(α)). We first argue that (ii) n ¤ l(q(α, n)). Otherwise,
assuming n ¡ l(q(α, n)) = l(q[α](n)(0)) we would have, by (i), that α = α, n.
And hence, by extensionality, n ¡ l(q[α](n)(0)) = l(q(α)) ¥ n, which is a con-
tradiction.

Hence, assuming n ¤ l(q(α)) we have

α(n)
(i)
= epsl

n(ε)(q[α](n))(0)
(ii)
= (εn b epsl

n+1(ε))(q[α](n))(0)

= εn(λx.q[α](n)�x(epsl
n+1(ε)(q[α](n)�x)))

= εn(λx.epsl
n+1(ε)(q[α](n)�x))

= εn(pn).

For the second equality, we have

pn(α(n)) = epsl
n+1(ε)(q[α](n+1))

= q[α](n+1)(epsl
n+1(ε)(q[α](n+1)))

= q([α](n + 1) � epsl
n+1(ε)(q[α](n+1)))

(i)
= q(α).

%

COROLLARY 3.7. For any given

εn : JRX

q : XN Ñ R

ω : XN Ñ N,

there are α : N Ñ X and p : X Ñ R satisfying equation (5).
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PROOF. Let R1 = R�N, and let π0 : R�N Ñ R and π1 : R�N Ñ N denote
the first and second projections. Define

q1(α) R1
= xq(α), ω(α)y

ε1n(pXÑR1)
X
= εn(λxX .π0(p(x))).

so q1 : (N Ñ X)Ñ R1 and ε1n : JR1X. Let

α
XN

= eps
π1
0 (ε1)(q1)

p1n(xX)
R1
= eps

π1
n+1(ε

1)(q1[α](n)�x).

Assume n ¤ ω(α) = π1(q1(α)). By Theorem 3.6 we have

α(n) X
= ε1n(p1n)

p1n(α(n))
R1
= q1α.

Finally, let n = ω(α) and p(x) = pn(x) = π0(p1n(x)). Then α and p satisfy the
desired equation, since ε1n(p1n) = εn(pn). %

3.2. Dependent variants of eps and epq. We have considered in previous pa-
pers [9, 11] a slight generalisation of the product of selection functions, where a
selection function (or a quantifier) at stage n can have access to the previously
computed values Xi for i   n. We called this the dependent product of selection
functions and quantifiers.

DEFINITION 3.8 (Dependent product of selection functions and quantifiers).
Given a quantifier φ : KX and a family of quantifiers ψ : X Ñ KY, define the dependent
product quantifier (φbd ψ) : K(X�Y) as

(φbd ψ)(pX�YÑR)
R
= φ(λxX .ψ(x, λyY.p(x, y))).

Also, given a selection function ε : JX and a family of selection functions δ : X Ñ JY,
define the dependent product selection function (εbd δ) : J(X�Y) as

(εbd δ)(pX�YÑR)
X�Y
= (a, b(a))

where

a X
= ε(λxX .p(x, b(x)))

b(x) Y
= δ(x, λyY.p(x, y)).

As done for the simple product of selection functions and quantifiers, we can
also iterate the dependent products as follows:

DEFINITION 3.9 (EPS and EPQ). Given a family of selection functions

ε : Πk(Πi kXi Ñ JXk),

define their dependent explicitly controlled product (denoted EPS) as

EPSl
s(ε)(q)

ΠiX|s|+i
=

#
0 if l(q(0))   |s|

(εs bd (λxX|s| .EPSl
s�x(ε)))(q) otherwise.

(6)
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As done for eps in Lemma 3.2, EPS can also be equivalently formulated as

EPSl
s(ε)(q)(i)

X|s|+i
=

#
0 if Dr ¨ t(l(qr(0))   |s|+ |r|)

εs�t(λxX|s�t| .EPSl
s�t�x(ε)(qt�x)) otherwise,

where t = [EPSl
s(ε)(q)](i).

Moreover, given a family of quantifiers

φ : Πk(Πi kXi Ñ KXk),

define their dependent explicitly controlled product (denoted EPQ) as

EPQl
s(φ)(q)

ΠiX|s|+i
=

#
q(0) if l(q(0))   |s|

(φs bd (λxX|s| .EPQl
s�x(φ)))(q) otherwise.

(7)

In the dialectica interpretation of DNS given above (Section 3.1), the selection
functions εn do not depend on the history of choices already made. Thus, it
was sufficient to use an iteration of the simple product of selection functions.
Nevertheless, Spector bar recursion and modified bar recursion are normally
formulated in the most general form, where selection functions at point n have
access to the values i   n.

Clearly eps is T-definable from EPS. We now show that in fact eps and EPS
are T-equivalent.

THEOREM 3.10 (HAω). eps ¥T EPS.

PROOF. To define EPS of type (Xk, R) we use eps of type (Πi kXi Ñ Xk, R).
The idea is to make use of a construction of type

(X Ñ JY)Ñ J(X Ñ Y)

that turns a family of selection function into a single selection function of a (pos-
sibly) higher type level. Hence, a family of selection functions εk : Πi kXi Ñ
JXk can be turned into a sequence of selection functions ε̃k : J(Πi kXi Ñ Xk) as

ε̃k(P(Πi kXiÑXk)ÑR)
Πi kXiÑXk= λsΠi kXi .εs(λyXk .P(λt.y)).

Given l : R Ñ N, the infinite (simple) product of selection functions gives

epsl
n(ε̃) : J(Πi¥n(Πk iXk Ñ Xi)).

The dependent product can then be defined as

EPSl
s(ε)(q

ΠiX|s|+iÑR)
ΠiX|s|+i
= (epsl

|s|(ε̃)(q
s))s,

where s : Πk jXk and αs(i)
X|s|+i
= α(i)(s � [αs](i)) and qs(α) = q(αs). We must

show that EPS as defined above satisfies the defining equation (6). We do this
by course-of-values induction on i. Let

t = [EPSl
s(ε)(q)](i)

(IH)
= [(epsl

|s|(ε̃)(q
s))s](i),

where q : ΠiX|s|+i Ñ R and qs : Πk(Πi |s|+kXi Ñ X|s|+k)Ñ R. If for some u ¨ t
we have l(qu(0))   |s|+ |u| the result is trivial, because (qs)u1(0) = qu(0) for
some u1 ¨ t1 = [epsl

|s|(ε̃)(q
s)](i), and hence (epsl

|s|(ε̃)(q
s))s(i) = 0. On the other
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hand, assuming @u ¨ t l(qu(0)) ¥ |s| + |u|, unfolding definitions we have:
Abbreviating u = [epsl

|s|(ε̃)(q
s)](i)

EPSl
s(ε)(q)(i)

X|s|+i
= (epsl

|s|(ε̃)(q
s))s(i)

= epsl
|s|(ε̃)(q

s)(i)(s � t)

L3.2
= ε̃|s|+i(λ f .(qs)u� f (epsl

|s|+i+1(ε̃)((q
s)u� f )))(s � t)

= εs�t(λx.(qs)u�λr.x(epsl
|s|+i+1(ε̃)((q

s)u�λr.x)))

(i,ii)
= εs�t(λx.qt�x(epsl

|s|+i+1(ε̃)((q
s)u�λr.x))

s�t�x)

(i)
= εs�t(λx.qt�x(epsl

|s|+i+1(ε̃)((qt�x)s�t�x))s�t�x)

= εs�t(λx.qt�x(EPSl
s�t�x(ε)(qt�x)))

= εs�t(λx.EPSl
s�t�x(ε)(qt�x)).

We have used the following facts which are easy to verify

(i) (t � α)s = ts � (α)s�ts
, for all t, s, α,

(ii) us = t, for t, s and u as above.

%

QUESTION 3.11. Note that a similar construction does not work in the case of quan-
tifiers, since there is no λ-term of type (X Ñ KY) Ñ K(X Ñ Y), for arbitrary X and
Y. In fact, in the case of quantifiers it is still open whether the simple explicitly con-
trolled iteration is T-equivalent to the explicitly controlled iteration of the dependent
product of quantifiers.

3.3. Relation to Spector’s bar recursion. As we have shown in Theorem 3.6,
which is essentially Spector’s solution, the explicitly controlled product of se-
lection functions eps can also be used to give a computational interpretation of
classical analysis. When presenting his solution in [19], Spector first formulates
a general “construction by bar recursion” as

BRω
s (φ)(q)

R
=

#
qs(0) if ωs(0)   |s|

φs(λxX|s| .BRω
s�x(φ)(q)) otherwise,

where φs : KRX|s|, q : ΠiXi Ñ R and ω : ΠiXi Ñ N. This is usually referred to as
Spector’s bar recursion, but we argue that this is misleading. We show that BR is
closely related to the product of quantifiers EPQ, whereas the special case of this
used by Spector is equivalent to the (dependent) product of selection functions
EPS, which we have shown to be equivalent to eps (Section 3.2).

REMARK 3.12. In fact, Spector’s definition seems slightly more general than BR
as defined here, since in Spector’s definition q might also depend on the length of the
sequence s. As we show in Lemma 5.1, however, it is possible to reconstruct |s| from the
sequence s � 0 if s is the point where Spector’s condition first happens.

THEOREM 3.13 (HAω + BI). BR ¥T EPQ.
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PROOF. In order to define EPQ of type (Xi, R) we use BR of the same type
(Xi, R). BR and EPQ has very similar definitions, except that in BR the stop-
ping condition is given directly on the current sequence s � 0, whereas in EPQ
a “length” function l : R Ñ N is used so that the stopping condition involves
the composition l � q. Hence, in order to define EPQ from BR it is essentially
enough to take ω = l � q, taking care of the fact that the types of q in EPQ and
BR are slightly different as q in EPQ takes a “shorter” input sequence starting
at point |s|. Define

EPQl
s(φ)(q) = BR

l�q|s|
s (φ)(q|s|).

If (l � q|s|)s(0) = l(q(0))   |s| then

EPQl
s(φ)(q) = BR

l�q|s|
s (φ)(q|s|) = (q|s|)s(0) = q(0).

On the other hand, if (l � q|s|)s(0) = l(qs(0)) ¥ |s| then

EPQl
s(φ)(q) = BR

l�q|s|
s (φ)(q|s|)

= φs(λxX|s| .BR
l�q|s|
s�x (φ)(q|s|))

(+)
= φs(λxX|s| .BR

l�(qx)|s�x|

s�x (φ)((qx)|s�x|)

= φs(λxX|s| .EPQl
s�x(φ)(qx))

= (φs b λxX|s| .EPQl
s�x(φ))(q)

where (+) BR
l�q|s|
s�x (φ)(q|s|) = BR

l�(qx)|s�x|

s�x (φ)((qx)|s�x|) can, as in Theorem 3.5,
be proved by SPEC and BI, since q|s|(s � x � α) = (qx)|s�x|(s � x � α). Recall that
HAω + BR $ SPEC (cf. Lemma 3.4). %

Spector, however, explicitly says that only a restricted form of BR is used for
the dialectica interpretation of (the negative translation of) countable choice. It
is this restricted form that we shall from now on call Spector’s bar recursion:

DEFINITION 3.14 (Spector’s bar recursion). Spector’s bar recursion [19] is the re-
cursion schema

SBRω
s (ε)

ΠiXi= s @

#
0 if ωs(0)   |s|

SBRω
s�c(ε) otherwise,

(8)

where c
X|s|
= εs(λxX|s| .SBRω

s�x(ε)), and where εs : JΠiXi X|s| and ω : ΠiXi Ñ N.

We now show that Spector’s bar recursion is T-definable from the explicitly
controlled product of selection functions EPS. It will follow for other results
that they are in fact T-equivalent (see Figure 1).

THEOREM 3.15 (HAω). EPS ¥T SBR.

PROOF. To define SBR of type (Xi) we use EPS of type (Xi, (ΠiXi)�N). EPS
and SBR have very similar definitions, except that EPS has an extra argument
q : Πi¡|s|Xi Ñ R. We can obtain SBR from EPS by simply taking q(α) to be the
identity function plus the stopping value ω(α). So, the length function l : R Ñ
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N can be taken to the the second projection. The details are as follows: Let
R = ΠiXi �N. Given ω : ΠiXi Ñ N and εs : JΠiXi X|s|, define

l(rR)
N
= π1(r)

qω(αΠiXi )
R
= xα, ω(α)y

ε̃s(pX|s|ÑR)
X|s|
= εs(π0 � p).

Define

SBRω
s (ε)

ΠiXi= s � EPSl
s(ε̃)(qω

s ).
If ωs(0)   |s| then

SBRω
s (ε) = s � EPSl

s(ε̃)(qω
s )

= s � 0

= s @ 0.
Assume now that ωs(0) ¥ |s|. We then have

SBRω
s (ε) = s � EPSl

s(ε̃)(qω
s )

= s � c � EPSl
s�c(ε̃)(qω

s�c)

= SBRω
s�c(ε)

where
c = ε̃s(λx.qω

s�x(EPSl
s�x(ε)(qω

s�x)))

= εs(λx.s � x � EPSl
s�x(ε)(qω

s�x))

= εs(λx.SBRω
s�x(ε))

which concludes the proof. %

§4. Implicitly Controlled Product. We have seen in Section 3 above that the
explicitly controlled iterated product of selection functions is sufficient to wit-
ness the dialectica interpretation of the double negation shift (and hence, classi-
cal countable choice). In this section we show that when interpreting this same
principle via modified realizability, one seems to need an unrestricted or, as we
we shall call it, implicitly controlled infinite product of selection functions.

DEFINITION 4.1 (ips). The implicitly controlled product of a family ε : Πk JXk of
selection functions is defined as

ipsn(ε)
J(ΠiXi+n)

= εn b ipsn+1(ε).

Unfolding the definition of b, this is the same as

ipsn(ε)(q)
ΠiXi+n
= εn(λx.qx(ipsn+1(ε)(qx)))looooooooooooooomooooooooooooooon

c

� ipsn+1(ε)(qc).(9)

We call the above infinite product implicitly controlled because under the as-
sumption of continuity for functionals of type ΠiXi+n Ñ R, for discrete R, the
bar recursive calls eventually terminate. Unwinding the definition of the binary
product, ips can also be equivalently formulated as follows.
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LEMMA 4.2 (HAω). The functional ips can be equivalently defined by the equation

ipsn(ε)(q)(i)
Xn+i
= εn+i(λxXn+i .ipsn+i+1(ε)(qs�x))

where q : ΠiXn+i Ñ R and s = [ipsn(ε)(q)](i).

PROOF. By unfolding the definition of the binary product of selection func-
tions using course-of-values induction. %

4.1. Realizability interpretation of classical analysis. We now describe how
ips can be used to interpret the double negation shift (and hence countable
choice) via modified realizability. As discussed in the introduction, a computa-
tional interpretation of full classical analysis can be reduced to an interpretation
of the double negation shift DNS. Given that the formula A(n) (in DNS) can be
assumed to be of the form Dx B(n, x), DNS is equivalent to

@n((A(n)ÑK)Ñ A(n))Ñ (@nA(n)ÑK)Ñ @nA(n).

That is because, for A(n) � Dx B(n, x), we have both KÑ A(n) and KÑ
@nA(n) in minimal logic. Moreover, since the negative translation brings us into
minimal logic, falsity K can be replaced by an arbitrary Σ0

1-formula R. This is
known as the (refined) A-translation [6], and is useful to analyse proofs of Π0

2
theorems in analysis. Recall that we are using the abbreviation

JR A = (A Ñ R)Ñ A.
The resulting principle we obtain is what we shall call the J-shift

J-shift : @nJR A(n)Ñ JR@nA(n).
DNS is then the particular case of the K-shift

K-shift : @nKR A(n)Ñ KR@nA(n),
when R =K; considering the other type construction

KR A = (A Ñ R)Ñ R.
One advantage of moving to the J-shift is that A(n) now can be taken to be an
arbitrary formula, not necessarily of the form Dx B(n, x). Hence the principle
J-shift is more general than DNS. We analyse the logical strength of the principle
J-shift in more detail in [10], where a proof translation based on the construc-
tion JR A is also defined. Our proof of the following theorem is very similar to
that of [4, Theorem 3]. We assume continuity and relativised bar induction as
formulated in Section 2.1.

THEOREM 4.3 (HAω + BI + CONT). ips0 modified realizes J-shift.

PROOF. Given a term t and a formula A we write “t mr A” for “t modified
realizes A” (see [21] for definition). Assume that

εn mr (A(n)Ñ R)Ñ A(n),

q mr @nA(n)Ñ R.
We show @sPS @nP(s, n) by relativised bar induction, where

P(s, n) � (s � ips|s|(ε)(qs))(n)mr A(n)
and the predicate used in the relativisation is

s P S � @n |s| (sn mr A(n)).
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Formally, we are making use of an equivalent so-called monotone variant of BI
in which the conclusion P(x y) can be strengthened to @s P S P(s), given that we
can prove @αSDk@t © [α](k)P(t) instead of @αSDkP([α](k)).
We write α P S as an abbreviation for @n([α](n) P S). The first assumption of BI
(i.e. S(x y)) is vacuously true. We now prove the other two assumptions.

(i) @αPS Dk@t© [α](k) @nP(t, n), where t © s means that t is an extension of the
finite sequence s. Given α we pick k to be the point of continuity of q on α. The
result follows simply by unfolding the definition of ips.

(ii) @sPS(@t, x(s � t � xPS Ñ @nP(s � t � x, n))Ñ @nP(s, n)). Let s P S and as-
sume

(a) @t, x(s � t � xPS Ñ @nP(s � t � x, n)).

We prove @nP(s, n) by course-of-values induction. Assume @k n P(s, k), i.e.

(b) @k n ((s � ips|s|(ε)(qs))(k)mr A(k)).

We want to show (s � ips|s|(ε)(qs))(n)mr A(n). If n   |s| we are done, since in
this case (s � ips|s|(ε)(qs))(n) = sn (and s P S). Assume n ¥ |s|. Then our goal
becomes

εn(λxXn .qs�t�x(ipsn+1(ε)(qs�t�x)))mr A(n),
where t = [ips|s|(ε)(qs)](n� |s|). This follows from

λxXn .qs�t�x(ipsn+1(ε)(qs�t�x))mr A(n)Ñ R
which, by definition, is

@xXn(x mr A(n) Ñ qs�t�x(ipsn+1(ε)(qs�t�x))mr R).
Let x such that x mr A(n). By our assumption (b) we have that s � t � x P S. And
by assumption (a) we get (s � t � x � ipsn+1(ε)(qs�t�x))mr @nA(n). The proof is
then concluded by the assumption that q mr @nA(n)Ñ R. %

4.2. Dependent variant of ips. The proof given for the equivalence between
EPS and eps in Section 3.2 can be easily adapted to show that also ips is T-
equivalent to its dependent variant IPS.

DEFINITION 4.4 (IPS). Let ε : Πk(Πi kXi Ñ JXk). Define the dependent im-
plicitly controlled product of selection functions (denoted IPS) as

IPSs(ε)
J(ΠiX|s|+i)

= εs bd (λxX|s| .IPSs�x(ε)).

As in Lemma 4.2 for ips, we can also equivalently define IPS as

IPSs(ε)(q)(i)
X|s|+i
= εs�t(λxX|s|+i .IPSs�t�x(ε)(qt�x)),

where t = [IPSs(ε)(q)](i).

We again use the fact that a family of selection functions Πi kXi Ñ JXk can
be turned into a single section function J(Πi kXi Ñ Xk) in order to simulate
IPS over T using ips.

THEOREM 4.5 (HAω). IPS =T ips.
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PROOF. It is clear that IPS is a generalisation of ips. We now show that IPS
is T-definable from ips, following the same ideas used to show that EPS is T-
equivalent to eps (Section 3.2). In fact, the proof here is slightly simpler since
we do not have to worry about the length function l. Let ε̃k be as defined in
Lemma 3.10. The infinite (simple) product of selection functions applied to ε̃
gives

ips0(ε̃) : J(Πi(Πk iXk Ñ Xi)).
IPS can then be defined as, where s : Πk iXk so that |s| = i,

IPSs(ε)(qΠjX|s|+jÑR)
ΠjX|s|+j
= (ips|s|(ε̃)(q[s]))[s]

where α[s](i)
Xi= α(i)(s � [α[s]](i)) and q[s](α) = q(α[s]). Unfolding the definitions

IPSs(ε)(q)(i)
X|s|+i
= (ips|s|(ε̃)(q[s]))[s](i)

= ips|s|(ε̃)(q[s])(i)(s � t)

D4.4
= ε̃|s|+i(λ f .(q[s])u� f (ips|s|+i+1(ε̃)((q[s])u� f )))(s � t)

= εs�t(λx.(q[s])u�λr.x(ips|s|+i+1(ε̃)((q[s])u�λr.x)))

(i,ii)
= εs�t(λx.qt�x(ips|s|+i+1(ε̃)((q[s])u�λr.x))

[s�t�x])

(iii)
= εs�t(λx.qt�x(ips|s|+i+1(ε̃)((qt�x)[s�t�x]))[s�t�x])

= εs�t(λx.qt�x(IPSs�t�x(ε)(qt�x)))

= εs�t(λx.IPSs�t�x(ε)(qt�x))

where t = [(ips|s|(ε̃)(q[s]))[s]](i) and u = [ips|s|(ε̃)(q[s])](i). We used that

(i) (t � α)[s] = t[s] � α[s�ts ], for all t, s, α,

(ii) u[s] = t, for t, s and u as above

(iii) (q[s])u�λr.x = (qt�x)[s�t�x].
%

REMARK 4.6. Notice that an implicitly controlled product of quantifiers IPQ

IPQs(φ) = φs bd λx.IPQs�x(φ)(10)

does not exist, in the sense that the equation above is inconsistent. It is enough to
consider the case when R = B and Xi = B. Take φs(p) =  p(true). Moreover, take q
to be any constant function. Then, we have

IPQx y(φ)(q) = φx y(λx.IPQxxy(φ)(qx))

=  IPQxtruey(φ)(qtrue)

=  IPQxtruey(φ)(q)

=  IPQx y(φ)(q),

as q = qtrue since q is constant, and IPQxxy(φ) = IPQx y(φ) since the quantifiers φs
do not depend on s. See also section 5.6 of [11] where a different argument is given in
the specific case of the model of continuous functionals.
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4.3. Relation to modified bar recursion. The proof that ips interprets full
classical analysis, via modified realizability, is very similar to the one given in
[4, 5] that modified bar recursion MBR interprets full classical analysis. In this
section we show how MBR corresponds directly to the infinite iteration of a dif-
ferent form of binary product of selection functions. We also show (Sections 5.2
and 5.3) that this different product when iterated leads to a form of bar recur-
sion (MBR) which is nevertheless T-equivalent to IPS.

DEFINITION 4.7. Given a function ε P (X Ñ R)Ñ X�Y and a selection function
δ P JY define a selection function ε b̃ δ P J(X�Y) as

(ε b̃ δ)(p) X�Y
= ε(λx.p(x, b(x)))

where b(x) Y
= δ(λy.p(x, y)). We shall also consider a dependent version b̃d of the

product where δ : X Ñ JY and b(x) = δ(x, λy.p(x, y)).

The above construction shows how a mapping of type (X Ñ R) Ñ X � Y
can be extended to a selection function on the product space, given a selection
function on Y. We shall use this with X = Xn and Y = ΠiXi+n+1, so that we
obtain a selection function in J(ΠiXi+n).

DEFINITION 4.8 (mbr). Let εn : (Xn Ñ R) Ñ ΠiXn+i and ε = (εn)nPN. Define
the iterated skewed product mbr as

mbrn(ε)
J(ΠiXn+i)

= εn b̃mbrn+1(ε).

Unfolding the definition of b̃ we have

mbrn(ε)(q)
ΠiXn+i
= εn(λx.qx(mbrn+1(ε)(qx)).(11)

Define also the dependent iterated skewed product MBR

MBRs(ε)
J(ΠiX|s|+i)

= εs b̃d (λx.MBRs�x(ε)),(12)

where in this case εs : (X|s| Ñ R) Ñ ΠiX|s|+i. We name this mbr and MBR because
we will show this is essentially modified bar recursion as defined in [4, 5].

We think of ε as a sequence of skewed selection functions. The idea is that some-
times a witness for Xk is automatically a witness for all types Xi for i ¥ k. In
such cases, a selection function εn : (Xn Ñ R) Ñ Xn gives rise to a skewed se-
lection function εn : (Xn Ñ R) Ñ Πi¥nXi, so that the more intricate product
of selection functions (Definition 2.4) can be replaced by the simpler product
given in Definition 4.7.

As with IPS and EPS (Sections 3.2 and 4.2), we now show that also the simple
iterated skewed product mbr (cf. Section 4.3) is T-equivalent to its dependent
variant MBR.

THEOREM 4.9 (HAω). mbr ¥T MBR.

PROOF. Given a sequence of types Xi let

Yj � B� (Πi jXi Ñ ΠkXj+k).
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In order to define MBR of type (Xi, R) we use mbr of type (Yj, R). The intuition
for the construction below is the same as the one used to show that eps T-defines
EPS (Theorem 3.10), except that here we need an extra boolean flag as the whole
result of the skewed selection function will be returned on the first position of
the output. The flag is used so that functions quering such sequences can know
which are proper values and which are dummy values.
For any given εs : (Xj Ñ R)Ñ ΠkXj+k, where s : Πi jXi, define

ε̃ j : (Yj Ñ R)Ñ ΠkYj+k

by

ε̃ j(PYjÑR)(k)
Yj+k
=

$&%xtt, λtΠi jXi .εt(λxXj .P(x̂))y if k = 0,

xff, 0Πi j+kXiÑΠiXj+k+iy if k ¡ 0,

where x̂ = xtt, λsΠi jXi .xxXj , 0Xj+1 , 0Xj+2 , . . .yy. The simple skewed product of ε̃
gives mbr0(ε̃) : J(ΠiYi). Hence, MBR can then be defined from mbr as

MBRs(ε)(qΠiX|s|+iÑR)
ΠiX|s|+i
= (mbr|s|(ε̃)(q[s]))[s].

Here, for α : ΠiY|s|+i, we are defining

α[s](i)
X|s|+i
=

$&% f (s � [α[s]](i))(0) if α(i) = xtt, f Πj |s|+iXjÑΠkX|s|+i+ky,

g(s � [α[s]](n))(i� n) otherwise,

where n is the the greatest n   i such that α(n) is of the form xtt, gy (or n = i
if such does not exist). Note that α[s] : ΠiX|s|+i. Also, for q : ΠiX|s|+i Ñ R we
define

q[s](α) R
= q(α[s])

so q[s] : ΠiY|s|+i Ñ R. Unfolding the definitions we have

MBRs(ε)(q)
ΠiX|s|+i
= (mbr|s|(ε̃)(q[s]))[s]

(11)
=

(
ε̃|s|(λ f Y|s| .(q[s]) f (mbr|s|+1(ε̃)((q[s]) f )))

)[s]
(i)
= εs(λxX|s| .(q[s])x̂(mbr|s|+1(ε̃)((q[s])x̂)))

(ii)
= εs(λxX|s| .qx(

(
mbr|s�x|(ε̃)((qx)[s�x])

)[s�x]
))

= εs(λxX|s| .qx(MBRs�x(ε)(qx))),

using

(i) (ε̃|s|(F))[s] = εs(λx.F(x̂))
(ii) (q[s])x̂(α) = q((x̂ � α)[s]) = qx(α[s�x]) = (qx)[s�x](α)

which can be shown directly from the definitions of q[s], α[s] and x̂. %

We now show that a slight generalisation of modified bar recursion [4, 5] is
T-equivalent to the iterated product of skewed selection functions.

THEOREM 4.10 (HAω + BI + CONT). Define MBR1 as

MBR1s(ε)(q)
ΠiXi= s � εs(λxX|s| .q(MBR1s�x(ε)(q)))(13)
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where q : ΠiXi Ñ R and εs : (X|s| Ñ R) Ñ ΠiX|s|+i. Then MBR and MBR1 are
T-equivalent.

PROOF. MBR1 is a generalisation of modified bar recursion (as defined in [4,
5]) to sequence types. If all Xi = X we have precisely the definition given in
[4, 5]. For one direction, let q : ΠiXi Ñ R and s : Πi nXi and define

MBR1s(ε)(q)
ΠiXi= s �MBRs(ε)(qs).

Unfolding definitions we have

MBR1s(ε)(q) = s �MBRs(ε)(qs)

(12)
= s � ((εs b̃d λx.MBRs�x(ε))(qs))

(D4.7)
= s � εs(λxX|s| .qs�x(MBRs�x(ε)(qs�x)))

= s � εs(λxX|s| .q(s � x �MBRs�x(ε)(qs�x)))

= s � εs(λxX|s| .q(MBR1s�x(ε)(q))).
For the other direction, let q : ΠiX|s|+i Ñ R. Define

MBRs(ε)(q)
ΠiX|s|+i
= MBR1x y(λt.εs�t)(q).

We then have
MBRs(ε)(q) = MBR1x y(λt.εs�t)(q)

(13)
= εs(λxX|s| .q(MBR1x(λt.εs�t)(q)))
(+)
= εs(λxX|s| .qx(MBR1x y(λt.εs�x�t)(qx)))

= εs(λxX|s| .qx(MBRs�x(ε)(qx))),
where

(+) MBR1x�r(λt.εs�t)(q) = x �MBR1r(λt.εs�x�t)(qx)

can be proven by bar induction on the sequence r, assuming continuity of q
(similar to Theorem 3.5). %

COROLLARY 4.11. Gandy’s functional Γ is T-equivalent to MBR with Xi = N for
all i P N.

PROOF. It has been shown in [5] that the Γ functional is T-equivalent to MBR
of lowest type. It remains to observe that the equivalence of Theorem 4.10 re-
spects the types. %

QUESTION 4.12. It should be mentioned that in [2] yet another form of bar recur-
sion is used for the interpretation of the double negation shift (although they also use
modified bar recursion when dealing with dependent choice). We refer to this different
bar recursion as the bbc functional. It completely open how the bbc functional fits into
the picture in Figure 1. For more information on the bbc functional see [3].

§5. Further Inter-definability Results. In this section we prove three further
inter-definability results, namely IPS ¥ EPQ, ips ¥ mbr and MBR ¥ IPS.
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5.1. IPS ¥ EPQ. It has been shown in [5] that BR is T-definable from modi-
fied bar recursion. Here we simplify that construction and use it to show that
EPQ is T-definable from IPS. Moreover, we make explicit the assumption in [5]
that for all ω : ΠiXi Ñ N and α : ΠiXi there exists an n such that ω(α, n)   n,
i.e.

@ω@αDn(ω(α, n)   n).(14)

First we prove that (the totalisation of) Spector’s search functional is definable in
Gödel’s system T.

LEMMA 5.1 (HAω). The totalisation of Spector’s search functional
µsc(ω)(α) = least n(ω(α, n)   n)

is T-definable. More precisely, there exists a term t in Gödel’s system T such that the
following is provable in HAω

Dn(ω(α, n)   n)Ñ (ω(α, tωα)   tωα^@i   tωα(ω(α, i) ¥ i)).

In particular, HAω + (14) $ ω(α, tωα)   tωα.

PROOF. We show how the unbounded search in µsc can be turned into a
bounded search. Abbreviate An(ω, α) = (ω(α, n)   n). Consider the following
construction, given α : ΠiXi define αω : ΠiXi as

αω(i) =

#
0Xi if Dk¤ i + 1 Ak(ω, α)

α(i) otherwise.
Assume Dn(ω(α, n)   n). Let n is the least number such that An(ω, α) holds.
Then it is easy to see that αω = α, n� 1. Because n is least, we must have that
ω(αω) ¥ n� 1, and hence n ¤ ω(αω) + 1. Therefore, ω(αω) + 1 serves as an
upper bound on the search µsc, i.e. tωα = µn   ω(αω) + 1(ω(α, n)   n). %

The construction above shows that Spector’s search functional can be made
total in system T, so that whenever it is well-defined for inputs ω and α the
term t indeed computes the right value.

REMARK 5.2. In particular we have that bar recursion BR as formulated in Sec-
tion 3.3 is T-equivalent to the version �BR where we slightly change the stopping con-
dition to guarantee monotonicity, as used in [12],

�BR
ω

s (φ)(q)
R
=

#
qt(0) if Dt¨ s(ωt(0)   |t|)

φs(λxX|s| .�BR
ω

s�x(φ)(q)) otherwise,

where t (in qt(0)) is the shortest t such that ω(t̂)   |t|. Indeed, given ω, we can define

ω̃(α) = µsc(ω)(α)

so that once ω̃s(0)   |s| holds for some sequence s then it also holds for all extensions
of s. The same holds for SBR.

THEOREM 5.3 (HAω + (14)). IPS ¥T EPQ.

PROOF. We use a generalisation of the search operator above, namely

µk
sc(ω)(α) = least n(ω(α, n)   k + n),
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which is clearly definable in µsc. Let ψs : KRX|s| be a given family of quantifiers.
Let also XZY denote the sum of types X and Y, which can be implemented as
B� X � Y, since we assume all types are inhabited. Let injX : X Ñ X Z Y and
injY : X Z Y be the standard injections. We first turn each family of quantifiers
ψs : KRX|s|, where s : Πi |s|Xi, into a family of selection functions ψ̃t of type
JR(X|t| Z R), where t : Πi |t|(Xi Z R), as

ψ̃t(F(X|t|ZR)ÑR)
X|t|ZR
= injR(ψť(λxX|t| .F(injX|t|x)))

where ˇ(�) : Πi n(Xi Z R)Ñ Πi nXi is defined as

(š)i
Xi=

#
xi if si = injXi

(xi)

0Xi otherwise.
We will also make use of the dual operation that given an s : Πi nXi injects
this into s̃ : Πi n(Xi Z R). Finally, given s : Πi kXi and q : ΠiXk+i Ñ R and
ω : ΠiXi Ñ N define qω,s : Πi(Xk+i Z R)Ñ R as

qω,s(αΠi(Xk+iZR))
R
=

#
q([α̌](N) � 0) if @i N (α(i) P Xk+i)

a otherwise,

where N = µ
|s|
sc (ωs)(α̌) and α(µi   N (α(i) P R)) = injR(a). By Lemma 5.1,

under the assumption (14), qω,s is T-definable. Intuitively, when qω,s reads an
input sequence α it uses Spector’s search functional on ω to compute the point
N where Spector’s condition is satisfied in α̌. If all values in α up to that point
are Xi values, then we apply q. Otherwise, some value is encoding the return of
the computation R, and the first such value is then returned. We claim that

EPQω
s (ψ)(q

ΠiX|s|+iÑR)
R
= qω,s(IPSs̃(ψ̃)(qω,s))

does the job. Let us unfold the definitions. We consider two cases.
Assume first that ω(ŝ)   |s|. Then

EPQω
s (ψ)(q)

R
= qω,s(IPSs̃(ψ̃)(qω,s))

= q(0),

since in this case N = µ
|s|
sc (ωs)(α̌) = 0.

On the other hand, if ωs(0) ¥ |s|, we have

EPQω
s (ψ)(q)

R
= qω,s(IPSs̃(ψ̃)(qω,s))

(D4.4)
= qω,s(ψ̃s(λuX|s|ZR.(qω,s)u(IPSs̃(ψ̃)((qω,s)u)) � . . . )

= ψs(λx.(qω,s)injX|s| (x)(IPSs̃�injX|s| (x)(ψ̃)((qω,s)injX|s|(x)
)))

(i,ii)
= ψs(λx.(qx)ω,s�x(IPS

�s�x(ψ̃)((qx)ω,s�x)))

= ψs(λx.EPQω
s�x(ψ)(qx))

= (ψs bd λx.EPQω
s�x(ψ))(q),

noticing that (i) (qω,s)injX|s| (x)(α) = (qx)ω,s�x(α) and (ii) s̃ � injX|s|(x) = �s � x. %
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REMARK 5.4. As shown in [14, 15], if one extends system T with Spector’s bar
recursion, one can actually prove (14). Hence, the result above says that in all models
of system T where EPQ could exist, it indeed does whenever IPS also exists. We leave
it as an open question whether IPS already defines EPQ without assuming (14).

5.2. ips ¥ mbr. We now show that MBR and IPS are T-equivalent. In this
section we show that MBR is T-definable from IPS. The converse will be shown
in the following section. Given that mbr T-defines MBR, it is enough to show
that ips ¥T mbr

THEOREM 5.5 (HAω). ips ¥T mbr.

PROOF. Given a type X let us denote by X1 the type B�X. In order to define
mbr of type (Xi, R) we use ips of type (X1

i , R). The main idea for the construction
is that we can turn a skewed selection function into a proper selection functions
as follows. Given skewed selection functions εi : (Xi Ñ R)Ñ ΠjXi+j we define
selection functions ε̃i : J(ΠjX1

i+j) as

ε̃i( f ΠjX1
i+jÑR

)
ΠjX1

i+j
= λj.xff, εi(λxXi . f (x̂))(j)y,

where

x̂(j) =

#
xtt, xXiy if j = 0

xtt, 0Xi+jy if j ¡ 0.

Intuitively, the booleans ttt, ffu are used to distinguish between values returned
by εi and those values x̂ passed into a recursive call. Hence, given a q : ΠjXi+j Ñ

R we define q̃ : Πk(ΠjX1
i+k+j)Ñ R as q̃(α) = q(α̃) where, given α : Πk(ΠjX1

i+k+j)

we define α̃ : ΠjXi+j as

α̃(j)
Xi+j
=

#
(α(j)(0))1 if @k  j ((α(k)(0))0 = tt

(α(k)(j� k))1 otherwise,

where k = µk  j (α(k)(0))0 = ff. The construction α̃ receives as input a matrix
α : ΠiΠj¥iXj and produces a sequence ΠjXj as follows: As long as the value
of α(j)(0) is some x̂ (boolean will be tt) we filter out the x; once we reach a
value returned by an εk (boolean will be ff) then we return the whole sequence
returned by the skewed selection function εk. We claim that mbr can be defined
as

mbri(ε)(q)
ΠjXi+j
= (

(
ipsi(ε̃)(q̃)

)ΠkΠjX1
i+k+j(0))1

where εi : (Xi Ñ R)Ñ ΠjXi+j and q : ΠjXi+j Ñ R. Recall that given a sequence
β : Πi n(Xi �Yi) we write β1 : Πi nYi for the projection of the sequence on the
second coordinates. Unfolding definitions
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mbri(ε)(q)
ΠjXi+j
= (ipsi(ε̃)(q̃)(0))1

(L4.2)
= (ε̃i(λα

ΠjX1
i+j .q̃α(ipsi+1(ε̃)(q̃α))))1

= εi(λxXi .q̃x̂(ipsi+1(ε̃)(q̃x̂)))

(i)
= εi(λxXi .�(qx)(ipsi+1(ε̃)(

�(qx))))

(ii)
= εi(λxXi .qx((ipsi+1(ε̃)(

�(qx))(0))1))

= εi(λxXi .qx(mbri+1(ε)(qx)))

= (εi b̃mbri+1(ε))(q),
using that

(i) q̃x̂(β) = �(qx)(β).
(ii) β̃ = (ipsi+1(ε̃)(

�(qx))(0))1, for β = ipsi+1(ε̃)(
�(qx)).

%

5.3. MBR ¥ IPS. We now show that the implicitly controlled product of se-
lection functions IPS is T-definable from (and hence T-equivalent to) modified
bar recursion MBR.

THEOREM 5.6 (HAω). MBR ¥T IPS.

PROOF. Let Yn = ΣiΠn¤j¤iXj. We will show that IPS of type (Xi, R) is T-
definable from MBR of type (Yi, R). We make use of the following two map-
pings: G : Xi Ñ Yi is defined as

G(xXi )
Yi= xxy

and F : Πi¥nYi Ñ Πi¥nXi

F(α)(i)
Xi= α(j)(i)

where j ¤ i is the first position such that i   j + |α(j)|. One can think of F(α) as
concatenating a given sequence of finite sequences α(i). We will also apply G
to sequences, with the understanding that this means applying G pointwise.
Given selection functions εs : JRX|s| define, by course-of-values, skewed selec-
tion functions of type

νr : (Y|r| Ñ R)Ñ ΠiY|r|+i,

where r : Πi |r|Yi, as

νr(PY|r|ÑR)(i)
Y|r|+i
= G(εF(r�t)(λxX|r|+i .P(x(Ft) � xy)))

where t
Πj iY|r|+j

= [νr(PY|r|ÑR)](i). Also, given q : Πi¥nXi Ñ R define q̃ : Πi¥nYi Ñ
R as

q̃(α) R
= q(Fα).

We claim that IPS can be defined from MBR as

IPSs(ε)(q)
ΠiX|s|+i
= F(MBRGs(ν)(q̃)),
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which can be shown as follows:

IPSs(ε)(q)(i)
X|s|+i
= F(MBRGs(ν)(q̃))(i)

= F(νGs(λyY|s| .q̃y(MBR(Gs)�y(ν)(q̃y))))(i)

= F(λi.G(εF(G(s)�t)(λx.q̃x(Ft)�xy(MBR(Gs)�x(Ft)�xy(ν)(q̃x(Ft)�xy)))))(i)
(i)
= εs�ť(λx.q̃xť�xy(MBR(Gs)�xť�xy(ν)(q̃xť�xy)))

(ii)
= εs�ť(λx.qť�x(F(MBR(Gs)�xť�xy(ν)(�qť�x))))

(iii)
= εs�ť(λx.qť�x(F(MBRG(s�ť�x)(ν)(�qť�x))))

= εs�ť(λx.qť�x(IPSs�ť�x(ε)(qť�x))),

where, for j   i, defining ť = [IPSs(ε)(q)](i), we have

F(t)(j)
Y|s|+j
= F([νGs(λy.q̃y(MBR(Gs)�y(ν)(q̃y)))](i))(j)

= εF((Gs)�[t](j))(λx.q̃xF([t](j))�xy(MBR(Gs)�xF([t](j))�xy(ν)(q̃xF([t](j))�xy)))

(i,ii)
= εs�[ť](j)(λx.q[ť](j)�x(IPSs�[ť](j)�x(ε)(q[ť](j)�x)))

= (ť)(j)

using course-of-values induction (induction hypothesis [F(t)](j) = [ť](j)). We
have also used the following facts which can be easily verified:

(i) F(λi.G(vi))(i) = vi and F(G(s) � t) = s � F(t)

(ii) q̃xsy = rqs(α)

(iii) (Gs) � xť � xy = G(s � ť � x).
%

§6. Summary of Results. Figure 1 gives a diagrammatic picture of the inter-
definability results presented above. We use a full-line-arrow to represent that
the inter-definability holds over HAω, whereas a dotted-line-arrow indicates
that extra assumptions are needed. We have used extra assumptions in three
cases. In Theorem 5.3 we use bar induction, whereas in Theorem 3.5 we have
made use of Spector’s condition SPEC. It is an interesting open question whether
any of these four results can be shown in HAω alone.
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