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Abstract

Real PCF is a programming language for exact real number computa-
tion, introduced in order to investigate theoretical issues such as semantics,
computational adequacy, program correctness and derivation, universality,
algorithms for higher-order functions.

1 Introduction

Real PCF is a programming language for higher-order exact real number com-
putation [9]. It was introduced in order to investigate theoretical issues such
as semantics and computational adequacy [7], universality [8], program cor-
rectness and derivation [12, 13], algorithms for higher-order functions such as
definite integration and global maxima determination [5, 4]. Related work by
Pietro Di Gianantonio, Abbas Edalat, Peter Potts and the author can be found
in [14, 29, 6].

Real PCF has ground types for truth-values, natural numbers and real num-
bers. The derived types are defined by iterating a function-type construction.
Sequences are functions on natural numbers, and predicates are truth-valued
functions. Thus, in Real PCF one can define real numbers, functions between
real numbers, predicates on real numbers, sequences of real numbers, sequences
of sequences of real numbers, sequences of functions, functionals mapping se-
quences to numbers (such as limiting operators), functionals mapping functions
to numbers (such as integration and supremum operators), functionals mapping
predicates to truth-values (such as existential and universal quantification op-
erators), and so on. An extension of Real PCF with recursively defined types
is considered in [12, 13].

These notes are a complement to the lecture, consisting of background, basic
concepts, and references to the literature.
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2 The programming language PCF

In order to properly introduce Real PCF we must go back to PCF.
In 1969, Dana Scott introduced a logic of computable functions, later known

as LCF [16, 17, 25]. Although Scott’s paper was published only in 1993 as [33],
the original manuscript was widely circulated and inspired a whole generation
of researchers. Later, in 1977, Gordon Plotkin published a seminal paper in
which he considered the terms of Scott’s logic as a programming language [27],
called PCF (programming language for computable functions).

PCF can be seen as a simplified version of modern typed functional program-
ming languages [2] such as Haskell, Miranda, ML [20, 19, 26]. One has ground
types for booleans and naturals numbers. More complex types are formed by
iterating a function-type construction: if one has types σ and τ , then one can
form a new type (σ → τ). A version of PCF which is much closer to such
programming languages was developed in [28]. In addition to ground types and
function types, one has product types, sum types, and recursively defined types.
This language is referred to as FPC in [18].

Briefly, PCF has the following primitives: constants for truth-values and
natural numbers, a conditional construction, a test for zero, successor and pre-
decessor maps, and a recursion construction.

3 Domain theory

In his original paper, Scott introduced a model of LCF which validates the rules
of the logic. A subset of the rules defines program evaluation. In this model,
types are interpreted as mathematical structures that are nowadays known,
rather uninspiredly, as domains.

A domain can be seen either as a partially ordered set or, equivalently, as
topological space [31]. Good references to domain theory include [1, 28] (many
connections of domain theory with general mathematics can be found in [15]).
The reason why topology shows up in the mathematical theory of computation
is, of course, that computations are approximation processes, and topology is
a general theory of approximation [35, 34].

3.1 The domain of total and partial functions

A prototypical domain is the collection of total and partial functions N ⇀ N
ordered by graph inclusion. In this case the Scott topology coincides with the
finite-information topology used in recursion theory [30]. A set U ⊆ [N ⇀ N] is
open iff the following two conditions are met:

1. If f ∈ U and f ⊆ g then g ∈ U .

2. If f ∈ U then there is a finite f ′ ∈ U with f ′ ⊆ f .

Here a function is identified with its graph and hence is finite iff its graph is
finite.
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This topology has the property that a functional F : [N ⇀ N] → [N ⇀ N] is
continuous iff it is monotone and finite amounts of its output depend only of
finite amounts of its input. More precisely,

1. If f ⊆ g then F (f) ⊆ F (g).

2. For every finite h ⊆ F (f) there is a finite f ′ ⊆ f such that already
h ⊆ F (f ′).

The Myhill-Shepherdson Theorem says that the computable functionals are
continuous (and, conversely, that every “effectively” continuous functional is
computable) [30].

3.2 Order from topology

In general, the order and topology of a domain are related as follows. Given
the topology, one recovers the order by

x v y iff every neighbourhood of x is a neighbourhood of y.

That is, y is better than x if it has a richer supply of neighbourhoods. This order
can be defined in any topological space and is known as the specialization order
(see e.g. [21]). In the context of domain theory it is known as the information
order.

The Scott topology is highly non-Hausdorff, as in a Hausdorff space the
specialization order is the identity. In fact, it is immediate that a space is T1 iff
its specialization order is the identity. However, many domains which occur in
practice have classical Hausdorff spaces as their subspaces of maximal points.
For example, the subspace of maximal points of the domain of total and partial
functions consists of the total functions, and the relative Scott topology on the
total functions makes them into a space homeomorphic to Baire space. Our
main example will be the Euclidean real line, which appears as the subspace of
maximal points of the interval domain discussed below.

3.3 Topology from order

Conversely, given the order of a domain one recovers the topology by1:

U is Scott open iff the following two conditions are met:

1. If x ∈ U and x v y then y ∈ U .

2. If the least upper bound of an ascending sequence

x0 v x1 v · · · v xn v · · ·

belongs to U , then some term xi already belongs to U .
1This definition works for countably based domains (which are the ones one uses in prac-

tice). In general, ascending sequences have to be weakened to directed sets.
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For many purposes, a domain can be regarded as a poset with a least ele-
ment, called bottom and denoted by ⊥, and least upper bounds of ascending
sequences—but often one needs more structure not discussed in this note—
see [1]. A function f : D → E is Scott continuous iff it is monotone and
preserves least upper bounds of ascending sequences.

3.4 Flat domains

The simplest but not completely trivial domain is the so-called flat domain of
natural numbers N⊥ = N ∪ {⊥}. The idea is that a partial function f : N→ N
gets represented by a total function f⊥ : N⊥ → N⊥:

f⊥(x) =
{

f(x) if f(x) is defined,
⊥ otherwise.

The order on N⊥ is given by x v y iff x = ⊥ or x = y. A set U is Scott open iff
⊥ ∈ U implies U = N⊥. A function is continuous iff it is monotone. Similarly,
one has a flat domain of truth values B⊥ = {true, false,⊥} (cf. Kleene’s three-
valued logic [22]).

3.5 Fixed points, function spaces and recursive definitions

A fixed point of an endomap f : X → X is a point x ∈ X such that f(x) = x.
Every continuous endomap f : D → D on a domain D has a least fixed-point,
given by the least upper bound of the sequence fn(⊥). Least fixed points are
interesting mainly in connection with function spaces and recursive definitions.

Given domains D and E, one constructs a new domain [D → E] as follows.
The elements of [D → E] are the Scott continuous functions. The order is
defined pointwise:

f v g iff f(d) v f(d) in E for all d ∈ D.

A useful fact is that the functional [D → D] → D which maps a continuous
function to its least fixed point is itself continuous.

Suppose one has a recursive definition of a function, say f : N⊥ → N⊥, such
as

f(n) = if n = 0 then 1 else n · f(n− 1).

In this simple case one has just an inductive definition of the factorial function.
In general, such a recursive definition can be seen as a functional equation in
f . But how does one know that there is a solution? And if there is more than
one solution, which one does one select?

The above definition is equivalent to

f = F (f),

where F : [N⊥ → N⊥] → [N⊥ → N⊥] is defined by:

F (f)(n) = if n = 0 then 1 else n · f(n− 1)
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In general, there is no reason why there should be a function f satisfying f =
F (f). However, if the functional F is continuous, one knows that there is in
fact a least solution to the recursive definition, namely the least fixed point of
F . In the case of PCF, computational adequacy will tell us that this is the
appropriate solution of the recursive definition.

4 Scott’s model of PCF

The ground types of booleans and naturals of PCF are interpreted as the flat
domains defined above. Function types are interpreted as continuous function
spaces. Recursive definitions are interpreted via function spaces and least fixed-
points as discussed above. Since the primitive operations, including the least
fixed-point operator, are continuous, and since continuous functions are closed
under composition, all PCF-definable functions are continuous.

4.1 Computational adequacy of Scott’s model

Computationally, ⊥ corresponds to non-termination. This is made precise as
follows:

A PCF program M of ground type evaluates to a non-bottom value
in finitely many computation steps iff it denotes that value in Scott’s
model [27].

This is known as computational adequacy of Scott’s model.

4.2 Universality of Scott’s model

It is easy to see that one can define all partial recursive functions in PCF. Per-
haps surprisingly, some computable functions in the model fail to be definable.
Two of them are a “parallel” conditional such that

pif ⊥ then x else x = x

and an existential quantifier ∃ : [N⊥ → B⊥] → B⊥ defined by

∃(p) =





true if p(n) = true for some n,
false if p(⊥) = false,
⊥ otherwise.

(Notice that, by monotonicity of p ∈ [N⊥ → B⊥], the condition p(⊥) = false is
equivalent to p(x) = false for all x ∈ N⊥.) However,

If one adds these functions to PCF as primitive, then PCF becomes
universal for Scott’s model, in the sense that all computable func-
tions in the model become definable [27].

5 Real PCF

Real PCF is PCF extended with a ground type for real numbers, interpreted
as an interval domain that we refer to as the partial real line.
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5.1 Partial real numbers and universality

The partial real line is the domain of non-empty closed and bounded real in-
tervals ordered by reverse inclusion, together with an artificial least element
⊥. The idea is that singleton intervals represent total real numbers and that
non-singletons represent partial real numbers. This is justified by the fact that
the relative Scott topology on the set of total numbers yields a homeomorphic
copy of the Euclidean real line. Although the author is not aware of any explicit
mention of partial numbers in the literature, the idea is certainly a natural one.

Perhaps the most compelling reason to make partial numbers official is that
the set of computable real numbers is not recursively enumerable2, but the
larger set of computable partial real numbers is. This is analogous to what
happens with total and partial computable functions on the natural numbers.
For instance, if only total numbers were expressible in Real PCF, a universality
result would not be possible (unless the syntax of Real PCF was undecidable).

It has to be stressed that it is not enough to add just a bottom element de-
noting non-termination, for non-termination of a computation of a real number
can take place after some meaningful approximations are produced. In other
words, the set computable total numbers enlarged by just a bottom element is
still not recursively enumerable. Thus, it is not enough to talk about partial
functions on the reals. One does have to admit a rich supply of partial reals.
This is implicit in the work of Boehm and Cartwright [3], where the impossib-
ility of universality of any abstract data type for (total) real numbers is proved
by diagonalization, even in the presence of partial functions.

5.2 Connections with interval analysis

The interval domain was introduced by Dana Scott as an example in [32]. It is
related to the interval space used in interval analysis [24] as follows [11]. The
topology of the interval space is induced by the Hausdorff metric: the distance
between two intervals is the maximum of the distances of the end-points. A set
U of intervals is Scott open iff it is Hausdorff open and the conditions x ∈ U
and x ⊇ y together imply y ∈ U for all intervals x and y. The second condition
is the one which forces Scott continuous functions to be monotone. In other
words, a Hausdorff continuous monotone function is Scott continuous. But
in interval analysis one does work with monotone functions! Thus, implicitly,
interval analysts are actually working with the Scott topology.

As pointed out by Mike Smyth (personal communication), this indicates
that the Hausdorff topology is actually the Lawson topology in the case of the
interval domain. In general, the Lawson topology is a refinement of the Scott
topology which, for many classes of well-behaved domains, is compact Haus-
dorff [15, 1]. In our case we have an artificial least element in the interval
domain, so the above remarks are slightly inaccurate. Strictly speaking, the
interval domain endowed with the Lawson topology is the one-point compacti-
fication of the interval space endowed with the Hausdorff metric.

2See e.g. [23], where computability on the reals is expressed in terms of the interval domain.
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5.3 Primitive operations and universality

For simplicity and without essential loss of generality, here we consider Real
PCF extended with a type for the unit interval [0, 1] ⊆ R instead of the whole
real line. Notice that the interval domain over [0, 1] has a natural bottom
element, namely ⊥ = [0, 1].

It is interesting that, from the point of view of universality, the following
five numerical operations are enough, provided the parallel conditional and the
existential quantifier discussed above are also available:

x 7→ x/2, x 7→ (x + 1)/2, x 7→ min(2x, 1), x 7→ max(0, 2x− 1)

and

(x <⊥ y) =





true if x < y,
false if x > y,
⊥ otherwise.

Strictly speaking, one considers Scott continuous extensions of these functions
on the reals to the interval domain (the general extension problem is investigated
in detail in [10]). See [8] for the proof of universality of Real PCF and [12, 13]
for universality of Real PCF extended with recursive types.

5.4 Primitive operations and evaluation

From the point of view of evaluation, one needs more. Instead of considering
only the two linear maps

x 7→ x/2, x 7→ (x + 1)/2,

which have image [0, 1/2] and [1/2, 1], one considers more generally for every
interval a = [a, a] ⊆ [0, 1] the unique increasing affine map x 7→ px+ q : [0, 1] →
[0, 1] with image a, namely

consa(x) = (a− a)x + a.

In practice a is assumed to have rational end-points so that one has countably
many primitive operations. The idea is that

If M is a Real PCF program of real number type, then one knows
that the value of consa(M) is contained in the interval a, even if one
doesn’t know anything about the value of M .

Thus, the expression consa(M) can be regarded as a partially evaluated program
with partial result a. Then the following evaluation scheme is applied:

1. If one starts with M = M0, then the Real PCF machinery tries to reduce
M0 to a partially evaluated program consa1(M1).

2. This attempt may engage into an infinite loop.

3. If it doesn’t and the interval a1 is small enough, evaluation is successful
and stops.
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4. Otherwise, the Real PCF machinery applies the same scheme to M1.

5. The partial result produced by M1, if any, is combined with that of M0,
giving rise to a better result.

6. And so on.

Partial results are combined as follows. First, one defines a composition oper-
ations on the unit interval domain by

a ◦ b = consa(b).

This makes the interval domain over [0, 1] into a monoid (=semigroup) with
neutral element ⊥ = [0, 1]. Associativity can be expressed as consa ◦consb(x) =
consa◦b(x). Moreover, the information order of the interval domain is recovered
from composition by the following refinement property:

a ⊇ c iff there is some b with a ◦ b = c.

(If a is not a singleton then such an interval b is necessarily unique.) Hence,
if one starts with a Real PCF program M = M0 of real number type and gets
partial results

M0 → consa1(M1) M1 → consa2(M2) . . . Mn−1 → consan(Mn) . . .

then one has the refined partial evaluation

M → consa1(consa2(. . . (consan(Mn) . . .))) → consa1◦a2◦···◦an(Mn).

Therefore one gets a nested sequence of better and better partial results

a1 ⊇ a1 ◦ a2 ⊇ · · · ⊇ a1 ◦ a2 ◦ · · · ◦ an ⊇ · · · .

5.5 Computational adequacy

The Real PCF machinery is defined in such a way that computational adequacy
holds in the following form: For any Real PCF program of real number type, one
can get as close to the value of M as one wishes, in finitely many computation
steps. More precisely,

If a Real PCF program M denotes a (total or partial) real number
x 6= ⊥, then for every open interval a ⊇ x, as small as one pleases,
M → consb(N) for some b and N with a ⊇ b ⊇ x.

The proof uses, among other things, the fact that the primitive operations are
Scott continuous and the fact that a set U of intervals is Scott open iff the
following two conditions are met:

1. If x ∈ U and x ⊇ y then y ∈ U .

2. If x ∈ U then there is an interval x′ ∈ U whose interior contains x.

Here the interior is, of course, taken in the Euclidean topology of the real line.
It follows continuity of endomaps on the partial real line is characterized by

A monotone map f is continuous iff for every partial number y whose
interior contains f(x), there is a partial number x′ whose interior
contains x and one already has that the interior of y contains f(x′).
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5.6 Primitive operations and efficiency

If one generalizes from linear maps to Möbius transformations, then nothing is
gained in terms of expressibility, but a lot is gained in terms of efficiency [29].
For instance, many elementary functions can be defined via Möbius transform-
ations without the use of the parallel conditional or the existential quantifier.
This is based on the work of Vuillemin [36]. The Möbius transformations also
form a monoid, and a similar refinement property is satisfied, but here one uses
the base interval [0,∞] instead of the unit interval—see [6]. This makes Möbius
transformations suitable for program evaluation as above, as it is shown in [29].
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metic. In Proceedings of the Twelveth Annual IEEE Symposium on Logic
In Computer Science, Warsaw, Polland, Jun 1997.

[30] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

[31] D. S. Scott. Continuous lattices. In F.W. Lawvere, editor, Toposes, Algeb-
raic Geometry and Logic, volume 274 of Lectures Notes in Mathematics,
pages 97–136. Springer-Verlag, 1972.

[32] D. S. Scott. Lattice theory, data types and semantics. In Formal semantics
of programming languages, pages 66–106, Englewood Cliffs, 1972. Prentice-
Hall.

[33] D. S. Scott. A type-theoretical alternative to CUCH, ISWIM and OWHY.
Theoretical Computer Science, 121:411–440, 1993. Reprint of a manuscript
produced in 1969.

[34] M.B. Smyth. Power domains and predicate transformers: a topological
view. In J. Diaz, editor, Automata, Languages and Programming, pages
662–675. Springer-Verlag, 1983. LNCS 154.

[35] M.B. Smyth. Topology. In S. Abramsky, D. M. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 1,
pages 641–761. Clarendon Press, Oxford, 1992.

[36] J. Vuillemin. Exact real computer arithmetic with continued fractions.
IEEE Transactions on Computers, 39(8):1087–1105, 1990.

11


