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Welcome to the course! We will cover the following topics:

I. Monoidal categories

II. Higher categories

III. Coherence for monoidal categories

IV. Duality for monoidal categories

V. Duality for monoidal 2-categories

In the third lecture, we will use the proof assistant http://homotopy.io
to work directly with higher categorical objects. Bring a laptop!

There are no separate exercise classes, but there will be some
interesting problems to look at together along the way.

Examples will be drawn from sets, relations, and Hilbert spaces,
giving insight into applications to classical, nondeterministic, and
quantum computation.
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Category theory describes systems and processes:

• physical systems, and physical processes governing them;

• data types, and algorithms manipulating them;

• algebraic structures, and structure-preserving functions;

• logical propositions, and implications between them.

Monoidal category theory adds the idea of parallelism:

• independent physical systems evolve simultaneously;

• running computer algorithms in parallel;

• products or sums of algebraic or geometric structures;

• using separate proofs of P and Q to construct a proof of the
conjunction (P and Q).
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Why should this theory be interesting?

• Let A, B and C be processes, and let ⊗ be parallel composition

• What relationship should there be between these processes?

(A ⊗ B) ⊗ C A ⊗ (B ⊗ C)

• It’s not right to say they’re equal, since even just for sets,

(S × T) × U 6= S × (T × U).

• Maybe they should be isomorphic — but then what equations
should these isomorphisms satisfy?

• How do we treat trivial systems?

• What should the relationship be between A ⊗ B and B ⊗ A?
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Definition 1. A monoidal category is a category C equipped with the
following data:

• a tensor product functor

⊗ : C × C C;

• a unit object
I ∈ Ob(C);

• a family of associator natural isomorphisms

(A ⊗ B) ⊗ C
αA,B,C A ⊗ (B ⊗ C);

• a family of left unitor natural isomorphisms

I ⊗ A λA A;

• and a family of right unitor natural isomorphisms

A ⊗ I ρA A.
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αA,B,C ⊗ idD

αA,B⊗C,D

idA ⊗ αB,C,D

αA⊗B,C,D αA,B,C⊗D

Theorem 2. If the pentagon and triangle equations hold, then so does
any well-typed equation built from α, λ, ρ and their inverses.

Exercise. Use the triangle and pentagon equations to prove λI = ρI.
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The monoidal structure on Set is given by Cartesian product.

Definition 3. The monoidal structure on the category Set, and also
by restriction on FSet, is defined as follows:

• the tensor product is Cartesian product of sets, written ×,
acting on functions A f B and C g D as (f × g)(a, c) =

(
f(a), g(c)

)
;

• the unit object is a chosen singleton set {•};

• associators (A × B) × C
αA,B,C A × (B × C) are the functions

given by
(
(a, b), c

)
7→
(
a, (b, c)

)
;

• left unitors I × A λA A are the functions (•, a) 7→ a;

• right unitors A × I ρA A are the functions (a, •) 7→ a.

Other tensor products exist, but this one plays a canonical role in
our interpretation of classical reality.
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Definition 4. The category Hilb has objects given by Hilbert spaces,
and morphisms given by bounded linear maps. The subcategory
FHilb is its restriction to finite-dimensional Hilbert spaces.

Definition 5. The monoidal structure on the category Hilb, and
also by restriction on FHilb, is defined in the following way:

• the tensor product ⊗ : Hilb × Hilb Hilb is the tensor
product of Hilbert spaces;

• the unit object I is the one-dimensional Hilbert space C;

• associators (H ⊗ J)⊗K
αH,J,K H ⊗ (J ⊗K) are the unique linear

maps satisfying (u ⊗ v) ⊗ w 7→ u ⊗ (v ⊗ w) for all u ∈ H, v ∈ J
and w ∈ K;

• left unitors C⊗ H λH H are the unique linear maps satisfying
1 ⊗ u 7→ u for all u ∈ H;

• right unitors H ⊗C ρH H are the unique linear maps satisfying
u ⊗ 1 7→ u for all u ∈ H.
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Relations give another notion of process between sets.

Definition 6. Given sets A and B, a relation A R B is a subset
R ⊆ A × B.

We can think of a relation A
R
−→ B in a dynamical way, as specifying

how states of A can evolve into states of B:

A B
R

(1)

This is nondeterministic, because an element of A can be related to
more than one element of B, or to none.
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A B B C
R S

Then our interpretation gives a natural notion of composition:

A C
S ◦ R
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We can write relations as (0,1)-valued matrices:

A B
R

!




0 0 0 0
0 1 1 1
0 0 0 1





Composition of relations is then ordinary matrix multiplication,
with logical disjunction (OR) and conjunction (AND) for + and ×.
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The intuition we have developed leads to the following definition of
the category Rel.

Definition 7. The category Rel of sets and relations is defined as
follows:

• objects are sets A, B, C, . . .;

• morphisms are relations R ⊆ A × B,
with (a, b) ∈ R written aRb;

• composition of A R B and B S C is the relation
{(a, c) ∈ A × C | ∃b ∈ B : aRb, bSc};

• the identity morphism on A is the relation
{(a, a) ∈ A × A | a ∈ A}.

Define the category FRel to be the restriction of Rel to finite sets.

While Set is a setting for classical physics, and Hilb is a setting for
quantum physics, Rel is somewhere in the middle.

It seems like Rel should be a lot like Set, but we will discover it
behaves a lot more like Hilb.
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There is a canonical monoidal structure on the category Rel.

Definition 8. The monoidal structure on the category Rel is defined
in the following way:

• the tensor product is Cartesian product of sets, written ×,
acting on relations A R B and C S D by setting
(a, c)(R × S)(b, d) if and only if aRb and cSd;

• the unit object is a chosen singleton set = {•};

• associators (A × B) × C
αA,B,C A × (B × C) are the relations

defined by
(
(a, b), c

)
∼
(
a, (b, c)

)
;

• left unitors I × A λA A are the relations defined by (•, a) ∼ a;

• right unitors A × I ρA A are the relations defined by (a, •) ∼ a.

The Cartesian product is not a categorical product in Rel, so
although this monoidal structure looks like that of Set, it is more
similar to the structure on Hilb.
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Monoidal categories satisfy the interchange law, which governs the
interaction between composition and tensor product.

Theorem 9. Any morphisms A f B, B g C, D h E and E j F in a
monoidal category satisfy the interchange law:

(g ◦ f) ⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h)

Proof. This holds because of properties of the category C × C, and
from the fact that ⊗ : C × C C is a functor:

(g ◦ f) ⊗ (j ◦ h) ≡ ⊗(g ◦ f , j ◦ h)

= ⊗
(
(g, j) ◦ (f , h)

)
(composition in C × C)

=
(
⊗(g, j)

)
◦
(
⊗(f , h)

)
(functoriality of ⊗)

= (g ⊗ j) ◦ (f ⊗ h)

Remember the functoriality property: F(g ◦ f) = F(g) ◦ F(f).
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The idea is that f and g represent distinct processes taking place at
the same time.
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Monoidal categories have an elegant graphical calculus.

For morphisms A f B and C g D, we draw their tensor product
A ⊗ C f⊗g B ⊗ D like this:

f g

B

A

D

C

The idea is that f and g represent distinct processes taking place at
the same time.

Inputs are drawn at the bottom, and outputs are drawn at the top;
in this sense, “time” runs upwards.
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The left unitor I ⊗ A λA A, the right unitor A ⊗ I ρA A and the
associator (A ⊗ B) ⊗ C

αA,B,C A ⊗ (B ⊗ C) are also not depicted:

A A A B C
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The monoidal unit object I is drawn as the empty diagram:

The left unitor I ⊗ A λA A, the right unitor A ⊗ I ρA A and the
associator (A ⊗ B) ⊗ C

αA,B,C A ⊗ (B ⊗ C) are also not depicted:

A A A B C

λA ρA αA,B,C

The coherence of α, λ and ρ is essential for the graphical calculus to
function. Since there can only be a single morphism built from their
components of any given type, it doesn’t matter that their graphical
calculus encodes no information.
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Now let’s look at the interchange law:

(g ◦ f) ⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h)

f

g

h

j

C

B

A

F

E

D





































































=

       



       


f

g

h

j

C

B

A

F

E

D

Graphically it’s trivial.
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Now let’s look at the interchange law:

(g ◦ f) ⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h)

f

g

h

j

C

B

A

F

E

D





































































=

       



       


f

g

h

j

C

B

A

F

E

D

Graphically it’s trivial.

The apparent complexity of the theory of monoidal categories—
α, λ, ρ, coherence, interchange—was in fact complexity of the
geometry of the plane. So when we use a geometrical notation, the
complexity vanishes.
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Two diagrams are planar isotopic when one can be deformed
continuously into the other, such that:

• diagrams remain confined to a rectangular region of the plane;

• input and output wires terminate at the lower and upper
boundaries of the rectangle;

• components of the diagram never intersect.

Here are examples of isotopic and non-isotopic diagrams:

f

gh iso
=

f

g

h

not
iso

6=
f

g
h

We will allow heights of the diagrams to change, and allow input
and output wires to slide horizontally along the boundary, although
they must never change order.
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We can now state the correctness theorem.

Theorem 10. A well-formed equation between morphisms in a
monoidal category follows from the axioms if and only if it holds in
the graphical language up to planar isotopy.

Let f and g be morphisms such that the equation f = g is
well-formed, and consider the following statements:

• P(f , g) = ‘under the axioms of a monoidal category, f = g’

• Q(f , g) = ‘graphically, f and g are planar isotopic’

Soundness is the assertion that for all such f and g, P(f , g) ⇒ Q(f , g).
It is easy to prove: just check each axiom.

Completeness is the reverse assertion, that for all such f and g,
Q(f , g) ⇒ P(f , g). It is hard to prove; one must show that planar
isotopy is generated by a finite set of moves, each being implied by
the monoidal axioms.
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In a category, we cannot ‘look inside’ an object to inspect its
elements. We have do everything using the morphisms.

Definition 11. In a monoidal category, a state of an object A is a
morphism I A.

The monoidal unit object represents the trivial system, so a state is
a way for the system A to be ‘brought into existence’.

We draw a state I a A like this:

a

A
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which correspond to elements of H by considering the image of
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Example 12. Let’s examine the states in our example categories.

• In Hilb, states of a Hilbert space H are linear functions C H,
which correspond to elements of H by considering the image of
1 ∈ C.

• In Set, states of a set A are functions {•} A, which
correspond to elements of A by considering the image of •.

• In Rel, states of a set A are relations {•} R A, which
correspond to subsets by considering all elements related to •.



23 / 97I. Monoidal categories

The dual notion of state is effect.

Definition 13. In a monoidal category, an effect on an object A is a
morphism A I.



23 / 97I. Monoidal categories

The dual notion of state is effect.

Definition 13. In a monoidal category, an effect on an object A is a
morphism A I.

We can use states, effects and other morphisms to build up
interesting diagrams, which give ‘histories’ for a family of systems:

b

A

a

f

We can interpret an effect as a property observation of a system.
Overall this composite gives a state of A.
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graphically in the following way.

c

BA

Definition 14. A joint state I c A ⊗ B is a product state when it is of
the form I

λ−1
I I ⊗ I a⊗b A ⊗ B:

c

BA
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BA
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A morphism I c A ⊗ B is a joint state of A and B. We depict it
graphically in the following way.

c

BA

Definition 14. A joint state I c A ⊗ B is a product state when it is of
the form I

λ−1
I I ⊗ I a⊗b A ⊗ B:

c

BA

=
a b

BA

Definition 15. A joint state is entangled when it is not a product
state.
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• joint states of H and K are elements of H ⊗ K;
• product states are factorizable states;
• entangled states are elements of H ⊗ K which cannot be

factorized, i.e. entangled states in the quantum sense.
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Example 16. Let’s investigate joint states, product states, and
entangled states in our example categories.

• In Hilb:

• joint states of H and K are elements of H ⊗ K;
• product states are factorizable states;
• entangled states are elements of H ⊗ K which cannot be

factorized, i.e. entangled states in the quantum sense.

• In Set:

• joint states of A and B are elements of A × B;
• product states are elements (a, b) ∈ A × B;
• entangled states don’t exist.

• In Rel:

• joint states of A and B are subsets of A × B;
• product states are subsets U ⊆ A × B such that, for some

V ⊆ A and W ⊆ B, (v, w) ∈ U if and only if v ∈ V, w ∈ W;
• entangled states are subsets that aren’t of this form.
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In many theories, the systems A ⊗ B and B ⊗ A can be considered
essentially equivalent. Developing this idea gives rise to braided and
symmetric monoidal categories.

Definition 17. A braided monoidal category is a monoidal category
equipped with a natural isomorphism

A ⊗ B
σA,B B ⊗ A

satisfying the following hexagon equations:

(A ⊗ B) ⊗ C

A ⊗ (B ⊗ C) (B ⊗ C) ⊗ A

B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C B ⊗ (A ⊗ C)

α−1
A,B,C

σA,B⊗C

α−1
B,C,A

σA,B ⊗ idC

αB,A,C

idB ⊗ σA,C

A ⊗ (B ⊗ C)

(A ⊗ B) ⊗ C C ⊗ (A ⊗ B)

(C ⊗ A) ⊗ B

A ⊗ (C ⊗ B) (A ⊗ C) ⊗ B

αA,B,C

σA⊗B,C

αC,A,B

idA ⊗ σB,C

α−1
A,C,B

σA,C ⊗ idB
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We include the braiding in our graphical notation like this:

A ⊗ B
σA,B B ⊗ A B ⊗ A

σ−1
A,B A ⊗ B

The strands of a braiding cross over each other, so the diagrams are
not planar; they are inherently 3-dimensional.

Invertibility takes the following graphical form:

= =
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Naturality has the following graphical representation:

f g =
g f

f g =
g f

The hexagon equations look like this:

= =

So braiding with a tensor product of two objects is the same as
braiding with one then the other separately.
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Braided monoidal categories have a sound and complete graphical
calculus, as established by the following theorem.

Theorem 18. A well-formed equation between morphisms in a
braided monoidal category follows from the axioms if and only if it
holds in the graphical language up to 3-dimensional isotopy.

The coherence theorem is very powerful. For example, the
following equations hold:

= =

The second equation is called the Yang–Baxter equation, which plays
an important role in the mathematical theory of knots.
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Let’s consider this structure for our example categories.

Definition 19. The monoidal categories Hilb, Set and Rel can all
be equipped with a canonical braiding.

• In Hilb, H ⊗ K
σH,K K ⊗ H is the unique linear map extending

a ⊗ b 7→ b ⊗ a for all a ∈ H and b ∈ K.

• In Set, A × B
σA,B B × A is defined by (a, b) 7→ (b, a) for all

a ∈ A and b ∈ B.

• In Rel, A × B
σA,B B × A is defined by (a, b) ∼ (b, a) for all a ∈ A

and b ∈ B.
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31 / 97I. Monoidal categories
In Hilb, Rel and Set, the braidings satisfy an extra property.

Definition 20. A braided monoidal category is symmetric when

σB,A ◦ σA,B = idA⊗B

for all objects A and B, in which case we call σ the symmetry.

The symmetry condition has the following representation:

=

The strings can pass through each other, and knots can’t be formed.

Lemma 21. In a symmetric monoidal category σA,B = σ−1
B,A, with the

following graphical representation:

:= =
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Definition 8.1. A 2-category C consists of the following data:

• a collection Ob(C) of objects;

• for any two objects A, B, a category C(A, B), with objects called
1-morphisms drawn as A f B, and morphisms μ called
2-morphisms drawn as f μ g, or in full form as follows:

B A

g

f

μ
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• for 2-morphisms f μ g and g ν h, an operation called vertical
composition given by their composite as morphisms in C(A, B):

B A
g

f

h

μ

ν
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• for 2-morphisms f μ g and g ν h, an operation called vertical
composition given by their composite as morphisms in C(A, B):

B A
g

f

h

μ

ν

• for any triple of objects A, B, C a horizontal composition functor:

◦ : C(A, B) × C(B, C) C(A, C)

C A

j ◦ g

h ◦ f

ν ◦ μ ≡ C B A

j

h

ν

g

f

μ
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• for any object A, a 1-morphism A idA A called the identity
1-morphism;

• a natural family of invertible 2-morphisms f ◦ idA
ρf f and

idB ◦ f
λf f called the left and right unitors;

• a natural family of invertible 2-morphisms
(h ◦ g) ◦ f

αh,g,f h ◦ (g ◦ f) called the associators.

This structure is required to be coherent, meaning that any
well-formed diagram built from the components of α, λ, ρ and their
inverses under horizontal and vertical composition must commute.

As for monoidal categories, coherence follows just from the triangle
and pentagon equations.

A 2-category is strict just when every λf , ρf , αh,g,f is an identity.
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36 / 97II. Higher categories

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms
Morphisms 2-morphisms
Composition Vertical composition
Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.
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Cat, the 2-category of categories, functors and natural
transformations, is an important motivating example.

Definition. The 2-category Cat is defined as follows:

• objects are categories;

• 1-morphisms are functors;

• 2-morphisms are natural transformations;

• vertical composition is componentwise composition of natural
transformations, with (μ ∙ ν)A := μA ◦ νA;

• horizontal composition is composition of functors.
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In this more general graphical calculus, objects are represented by
regions, 1-morphisms by vertically-oriented lines, and 2-morphisms
by vertices:

B A

g

f

μ  

f

g

B Aμ

The graphical calculus is the dual of the pasting diagram notation.
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Horizontal and vertical composition is represented like this:

C B A

j

h

ν

g

f

μ  

h

j

C

f

g

B Aν μ = ν ◦ μ

A B
g

f

h

μ

ν

 

f

g

h

A B

μ

ν

= ν ∙ μ
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When using the graphical notation, as for monoidal categories, the
structures λ, ρ and α are not depicted.

There is also a correctness theorem, as we would expect.

Theorem. (Correctness of the graphical calculus for a 2-category)
A well-formed equation between 2-morphisms in a 2-category follows
from the axioms if and only if it holds in the graphical language up to
planar isotopy.

If we have only a single object A, which we may as well denote by a
region coloured white, then the graphical calculus is identical to
that of a monoidal category.
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Definition. In a 2-category, an equivalence is a pair of 1-morphisms
A F B and B G A, and 2-morphisms G ◦ F α idA and idB

β F ◦ G:

α β
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We can use the graphical calculus to define equivalence.

Definition. In a 2-category, an equivalence is a pair of 1-morphisms
A F B and B G A, and 2-morphisms G ◦ F α idA and idB

β F ◦ G:

α β

They must satisfy the following equations:

α-1

α
=

α

α-1
=

β

β-1
=

β-1

β
=
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Definition. In a 2-category, a 1-morphism A L B has a right dual
B R A when there are 2-morphisms G ◦ F α idA and idB

β F ◦ G

α = β =

satisfying the snake equations:

= =

Theorem. In Cat, a duality F a G is exactly an adjunction F a G
between F and G as functors.
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We now prove a nontrivial theorem relating equivalences and duals.

Theorem. In a 2-category, every equivalence gives rise to a dual
equivalence.

Proof. Suppose we have an equivalence in a 2-category, witnessed
by invertible 2-morphisms α and β. Then we will build a new
equivalence witnessed by α and β′, with β′ defined like this:

β′ :=

β

α-1

β-1

Since α′ is composed from invertible 2-morphisms it must itself be
invertible, and so it is clear that α′ and β still give an equivalence.



44 / 97II. Higher categories

We now demonstrate that the adjunction equations are satisfied.

The first adjunction equation takes following form:

α

β′
=

β

α-1

β-1

α

=
α

β

β-1

α-1

=
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The second is demonstrated as follows:

β′

α

=

β

α-1

β-1

α

=

β

α-1

β-1

α

β

α

α-1

β-1

=
β

α-1

β-1

α

β

α

α-1

β-1

= α-1

α α

α-1

=
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Since monoidal categories are just 2-categories with one object, we
immediately have the following corollary.

Corollary. In a monoidal category, if A ⊗ B ' B ⊗ A ' I, then A a B
and B a A.
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Monoidal 2-categories are hard to define. The definition is known,
but it is long and complex. This is a big problem in the field!

Remember the 2d graphical calculus for 2-categories:

• objects correspond to planes;

• 1-morphisms correspond to wires;

• 2-morphisms correspond to vertices.

For monoidal 2-categories, we simply extend this into 3d.

Tensor product. Given 2-morphisms f μ g and h ν j, the their
tensor product 2-morphism μ� ν is given like this:

μA
B

C
D

f

gg

h

j

ν
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Interchange. Components can move freely in their separate layers.

The order of 1-morphisms in separate sheets can be interchanged:

x x x x

This process itself gives a 2-morphism, which is called an interchanger.

These two interchangers are inverse to each other.

Unit object. A monoidal 2-category has a unit object I, represented
by a ‘blank’ region.
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and the unit object. Consider the interchanger diagram, but with all
4 planar regions labelled by the unit object:
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Something interesting happens when we combine interchangers
and the unit object. Consider the interchanger diagram, but with all
4 planar regions labelled by the unit object:

x x

 

We obtain the graphical representation of a braiding.
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Recall the following result which we saw earlier.

Theorem. A monoidal category is a 2-category with one object.

We can now extend this as follows.

Theorem. A braided monoidal category is a monoidal 2-category
with one object.

We can put this into context with notions of higher category.

Theorem. A monoidal 2-category is a 3-category with one object.

Corollary. A braided monoidal category is a 3-category with one
object and one 1-morphism.

Conjecture. A symmetric monoidal category is a 4-category with one
object, one 1-morphism and one 2-morphism.

The emerging pattern here is called the periodic table, and was
predicted by Baez and Dolan in 1995.
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Some monoidal categories have a particularly simple structure.

Definition 22. A monoidal category is strict if the morphisms αA,B,C,
λA and ρA are all identities.

Later we will sketch the proof of the following theorem.

Theorem 23. Every monoidal category is monoidally equivalent to
a strict monoidal category.

This seems like a very useful thing. But beware! This is not enough:
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) I ⊗ A = A = A ⊗ I

In particular, it does not ensure that (f ⊗ g) ⊗ h = f ⊗ (g ⊗ h).
The identity (A ⊗ B) ⊗ C id A ⊗ (B ⊗ C) might not be natural!

Definition 24. A category is skeletal when any two isomorphic
objects are equal.
Theorem. Not every monoidal category is monoidally equivalent to
a strict monoidal skeletal category.
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For the case of FHilb, everything works nicely.

Definition 25. The skeletal category MatC is defined as follows:

• objects are natural numbers 0, 1, 2, . . .;

• morphisms n m are matrices of complex numbers with m
rows and n columns;

• composition is matrix multiplication;

• identities n idn n are identity matrices.

Definition 26. The following structure makes MatC strict monoidal:

• tensor product is given on objects by n ⊗ m = nm, and on
morphisms by Kronecker product of matrices;

• the monoidal unit is the natural number 1;

• associators, left unitors and right unitors are identity matrices.



54 / 97III. Coherence
Definition 27. A monoidal functor F : C D between monoidal
categories is a functor equipped with natural isomorphisms

(F2)A,B : F(A) ⊗ F(B) F(A ⊗ B)
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Definition 27. A monoidal functor F : C D between monoidal
categories is a functor equipped with natural isomorphisms

(F2)A,B : F(A) ⊗ F(B) F(A ⊗ B)

F0 : I F(I)

making the following diagrams commute:

(
F(A) ⊗ F(B)

)
⊗ F(C) F(A) ⊗

(
F(B) ⊗ F(C)

)

F(A ⊗ B) ⊗ F(C) F(A) ⊗ F(B ⊗ C)

F
(
(A ⊗ B) ⊗ C

)
F
(
A ⊗ (B ⊗ C)

)

αF(A),F(B),F(C)

(F2)A,B ⊗ idF(C) idF(A) ⊗ (F2)B,C

(F2)A⊗B,C (F2)A,B⊗C

F(αA,B,C)
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Definition 27. A monoidal functor F : C D between monoidal
categories is a functor equipped with natural isomorphisms

(F2)A,B : F(A) ⊗ F(B) F(A ⊗ B)

F0 : I F(I)

making the following diagrams commute:

(
F(A) ⊗ F(B)

)
⊗ F(C) F(A) ⊗

(
F(B) ⊗ F(C)

)

F(A ⊗ B) ⊗ F(C) F(A) ⊗ F(B ⊗ C)

F
(
(A ⊗ B) ⊗ C

)
F
(
A ⊗ (B ⊗ C)

)

αF(A),F(B),F(C)

(F2)A,B ⊗ idF(C) idF(A) ⊗ (F2)B,C

(F2)A⊗B,C (F2)A,B⊗C

F(αA,B,C)

F(A) ⊗ I F(A)

F(A) ⊗ F(I) F(A ⊗ I)

ρF(A)

idF(A) ⊗ F0 F(ρ−1
A )

(F2)A,I

I ⊗ F(A) F(A)

F(I) ⊗ F(A) F(I ⊗ A)

λF(A)

F0 ⊗ idF(A) F(λ−1
A )

(F2)I,A
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Definition 28. A monoidal equivalence is a monoidal functor that is
an equivalence as a functor.

Theorem. There is a monoidal equivalence R : MatC FHilb.

Proof. We define R like this:

R(n) := Cn

R(n f m) := f as a linear map

(R2)m,n : |i〉 ⊗ |j〉 7→ |ni + j〉

R0 : 1 7→ 1

This is full, faithful and essentially surjective, and satisfies the
monoidal functor conditions.
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We now prove the strictification theorem.

Theorem 29. Every monoidal category is monoidally equivalent to
a strict monoidal category.

Proof sketch. Let C be a monoidal category, and define D like this:

• an object is F : C C equipped with a natural isomorphism

F(A) ⊗ B
γA,B F(A ⊗ B);

• a morphism (F, γ) (F′, γ′) is θ : F F′ such that:

F(A) ⊗ B F(A ⊗ B)

F′(A) ⊗ B F′(A ⊗ B)

γA,B

θA ⊗ idB

γ′
A,B

θA⊗B
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Proof sketch (continued).

• the tensor product is (F, γ) ⊗ (F′, γ′) := (F ◦ F′, δ), where δ is

F(F′(A)) ⊗ B
γF′(A),B F(F′(A) ⊗ B)

F(γ′
A,B)

F(F′(A ⊗ B)).
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Proof sketch (continued).

• the tensor product is (F, γ) ⊗ (F′, γ′) := (F ◦ F′, δ), where δ is

F(F′(A)) ⊗ B
γF′(A),B F(F′(A) ⊗ B)

F(γ′
A,B)

F(F′(A ⊗ B)).

We can then calculate these products:
(
(F, γ) ⊗ (F′, γ′)

)
⊗ (F′′, γ′′) = (F, γ) ⊗

(
(F′, γ′) ⊗ (F′′, γ′′)

)

They are equal, and indeed the category is strict monoidal.

Now build a monoidal functor L : C D in the following way:

L(A) := (A ⊗−, αA,−,−)

You can show that L is full and faithful.

Finally, restrict D to the strict monoidal subcategory containing
objects isomorphic to those in the image of L. Then L is a monoidal
equivalence of C with a strict monoidal category.
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The final topic in this chapter is coherence: any well-formed
equation built from α, α−1, λ, λ−1, ρ, ρ−1, id, ⊗ and ◦ holds.

An equation is well-formed when it does not make use of any
‘accidental equalities’ of objects. For example, suppose that
(A ⊗ A) ⊗ A = A ⊗ (A ⊗ A) = A. Then

αA,A,A = idA

is not well-formed.

To make this precise, let a bracketing be a fixed way to bracket a list
of objects of a given length, including empty brackets. For example,
we could define the following bracketings v, w:

v(A, B, C, D) = ((A ⊗ B) ⊗ ()) ⊗ (C ⊗ D)

w(A, B, C, D) =
(
() ⊗ (A ⊗ (B ⊗ C))

)
⊗ (() ⊗ (() ⊗ D)))

Then we can consider transformations of bracketings θ, θ′ : ν ⇒ μ.
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We now give a proof of the coherence theorem.

Theorem 30. Let v, w be bracketings; then any two transformations
θ, θ′ : v ⇒ w built from α, α−1, λ, λ−1, ρ, ρ−1, id, ⊗, and ◦ are equal.
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θ, θ′ : v ⇒ w built from α, α−1, λ, λ−1, ρ, ρ−1, id, ⊗, and ◦ are equal.

Proof. We can define a canonical morphism

v(L(A), . . . , L(Z)) Lv L(v(A, . . . , Z))

using the fact that L is a monoidal functor, and similarly for w.
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Proof. We can define a canonical morphism

v(L(A), . . . , L(Z)) Lv L(v(A, . . . , Z))

using the fact that L is a monoidal functor, and similarly for w.
Then the following diagram commutes, for both θ and θ′:

v(L(A), . . . , L(Z)) w(L(A), . . . , L(Z))
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L(θ(A,...,Z))

Lw



59 / 97III. Coherence

We now give a proof of the coherence theorem.

Theorem 30. Let v, w be bracketings; then any two transformations
θ, θ′ : v ⇒ w built from α, α−1, λ, λ−1, ρ, ρ−1, id, ⊗, and ◦ are equal.

Proof. We can define a canonical morphism

v(L(A), . . . , L(Z)) Lv L(v(A, . . . , Z))

using the fact that L is a monoidal functor, and similarly for w.
Then the following diagram commutes, for both θ and θ′:

v(L(A), . . . , L(Z)) w(L(A), . . . , L(Z))

L(v(A, . . . , Z)) L(w(A, . . . , Z))

θ(L(A),...,L(Z))

Lv
-1

L(θ(A,...,Z))

Lw

But θ(L(A),...,L(Z)) = θ′(L(A),...,L(Z)) = id! So L(θ(A,...,Z)) = L(θ′(A,...,Z)), and
hence θ(A,...,Z) = θ′(A,...,Z), since L is faithful.
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Part IV
Duals in monoidal categories
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right-dual to L, written L a R, when there is a unit morphism
I η R ⊗ L and a counit morphism L ⊗ R ε I such that:
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Dual objects have two basic interpretations:
• Topologically, they allow wires to bend
• Quantum mechanically, they model full-rank entangled states

Definition 31. An object L is left-dual to an object R, and R is
right-dual to L, written L a R, when there is a unit morphism
I η R ⊗ L and a counit morphism L ⊗ R ε I such that:

L L ⊗ I L ⊗ (R ⊗ L)

L I ⊗ L (L ⊗ R) ⊗ L

ρ−1
L

idL

idL ⊗ η

α−1
L,R,L

ε ⊗ idLλL

R I ⊗ R (R ⊗ L) ⊗ R

R R ⊗ I R ⊗ (L ⊗ R)

λ−1
R

idR

η ⊗ idR

αR,L,R

idR ⊗ ερR



62 / 97IV. Duals in monoidal categories
We draw an object L as a wire with an upward-pointing arrow, and
a right dual R as a wire with a downward-pointing arrow.

L R
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We draw an object L as a wire with an upward-pointing arrow, and
a right dual R as a wire with a downward-pointing arrow.

L R

The unit I η R ⊗ L and counit L ⊗ R ε I are drawn as bent wires:

R L

L R

This notation is chosen because of the attractive form it gives to the
duality equations:

= =

They are also called the snake equations.
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dimensional Hilbert space H is both right dual and left dual to its
dual Hilbert space H∗, in a canonical way.

Of course, this is the origin of the terminology.
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ε : |φ〉 ⊗ 〈ψ| 7→ 〈ψ |φ〉

The unit C η H∗⊗H is defined like so, for any orthonormal basis |i〉:

η : 1 7→
∑

i

〈i| ⊗ |i〉
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The monoidal category FHilb has all duals. Every finite-
dimensional Hilbert space H is both right dual and left dual to its
dual Hilbert space H∗, in a canonical way.

Of course, this is the origin of the terminology.

The counit H ⊗ H∗ ε C is defined like this:

ε : |φ〉 ⊗ 〈ψ| 7→ 〈ψ |φ〉

The unit C η H∗⊗H is defined like so, for any orthonormal basis |i〉:

η : 1 7→
∑

i

〈i| ⊗ |i〉

These definitions sit together rather oddly: η seems basis-dependent,
while ε is clearly not.

In fact the same value of η is obtained whatever orthonormal basis
is used, as we will see below.

Infinite-dimensional spaces do not have duals.
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In Rel, every object is its own dual, even sets of infinite cardinality.
The unit 1 η S × S and counit S × S ε 1 can be defined like this:

• ∼η (s, s) for all s ∈ S

(s, s) ∼ε • for all s ∈ S
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In Rel, every object is its own dual, even sets of infinite cardinality.
The unit 1 η S × S and counit S × S ε 1 can be defined like this:

• ∼η (s, s) for all s ∈ S

(s, s) ∼ε • for all s ∈ S

In MatC, every object n is its own dual, with a canonical choice of η
and ε given as follows:

η : 1 7→
∑

i

|i〉 ⊗ |i〉 ε : |i〉 ⊗ |j〉 7→ δij1
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The category Set only has duals for sets of size 1. Let’s see why.

Definition 32. In a monoidal category with dualities A a A∗ and
B a B∗, given a morphism A f B, we define its name I pfq A∗ ⊗ B
and coname A ⊗ B∗ xfy I as the following morphisms:

BA∗

f

A B∗

f

Morphisms can be recovered from their names or conames:

A

B

f =

B

A

f

In Set 1 is terminal, and so all conames A ⊗ B∗ xfy 1 must be equal.
If Set had duals this would imply all functions A B were equal.
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We first show duals are well-defined up to canonical isomorphism.

Lemma 33. In a monoidal category with L a R, then L a R′ if and
only if R ' R′. Similarly, if L a R, then L′ a R if and only if L ' L′.
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only if R ' R′. Similarly, if L a R, then L′ a R if and only if L ' L′.

Proof. If L a R and L a R′, define maps R R′ and R′ R as follows:

R

L

R′

R′
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R

The snake equations imply that these are inverse.
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We first show duals are well-defined up to canonical isomorphism.

Lemma 33. In a monoidal category with L a R, then L a R′ if and
only if R ' R′. Similarly, if L a R, then L′ a R if and only if L ' L′.

Proof. If L a R and L a R′, define maps R R′ and R′ R as follows:

R

L

R′

R′

L

R

The snake equations imply that these are inverse. Conversely, if
L a R and R f R′ is invertible, we can construct a duality L a R′:

L
R′

R
f -1

L
R′

R
f

An isomorphism L ' L′ allows us to produce a duality L′ a R in a
similar way.
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Given a duality, the unit determines the counit, and vice-versa.

Lemma 34. In a monoidal category, if (L, R, η, ε) and (L, R, η, ε′)
both exhibit a duality, then ε = ε′. Similarly, if (L, R, η, ε) and
(L, R, η′, ε) both exhibit a duality, then η = η′.

Proof. For the first case, we use the following graphical argument.

ε

=

ε

ε′
iso
=

ε′

ε =

ε′

The second case is similar.



68 / 97IV. Duals in monoidal categories

The following lemma shows that dual objects interact well with the
monoidal structure.



68 / 97IV. Duals in monoidal categories

The following lemma shows that dual objects interact well with the
monoidal structure.

Lemma 35. In a monoidal category, I a I.

Proof. Taking η = λ−1
I : I I ⊗ I and ε = λI : I ⊗ I I shows that
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The following lemma shows that dual objects interact well with the
monoidal structure.

Lemma 35. In a monoidal category, I a I.

Proof. Taking η = λ−1
I : I I ⊗ I and ε = λI : I ⊗ I I shows that

I a I. The snake equations follow from the coherence theorem.

Lemma 36. In a monoidal category, L a R, L′ a R′ ⇒ L⊗ L′ a R′⊗R.

Proof. Suppose that L a R and L′ a R′. We make the new unit and
counit maps from the old ones, and compute as follows:

L

R

L′

R′ iso
=

L L′

=

L L′

The other snake equation follows similarly.
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If the monoidal category has a braiding then a duality L a R gives
rise to a duality R a L, as the next lemma investigates.

Lemma 37. In a braided monoidal category, L a R ⇒ R a L.
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If the monoidal category has a braiding then a duality L a R gives
rise to a duality R a L, as the next lemma investigates.

Lemma 37. In a braided monoidal category, L a R ⇒ R a L.

Proof. Construct a new duality as follows:

I η′

L ⊗ R R ⊗ L ε′ I

We can then test the snake equations:

= =

The other snake equation can be proved in a similar way.
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Next we will prove some nice theorems showing the relationship
between duals and monoidal functors.

To understand them, we will need to develop a graphical calculus
for monoidal functors.

We depict a monoidal functor F : C D and the isomorphisms
(F2)A,B : F(A) ⊗ F(B) F(A ⊗ B) and F0 : I F(I) like this:

F(A)

F(A)

F(A) ⊗ F(B)

F(A ⊗ B) F(I)

I



71 / 97IV. Duals in monoidal categories

Naturality means that morphisms can pass through the gaps:

f g
=

f g
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Naturality means that morphisms can pass through the gaps:

f g
=

f g

The coherence equations look like this:

= = =

They have a nice topological flavour.
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Let’s prove our first theorem using these techniques.

Theorem 38. Monoidal functors preserve duals.
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Let’s prove our first theorem using these techniques.

Theorem 38. Monoidal functors preserve duals.

Proof. If we apply our monoidal functor to the unit and counit, we
can show that the duality equations are still satisfied:

= =

The other duality equation can be proved in a similar way.
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Given two functors F, G : C D and a natural transformation
μ : F G, we can denote it like this:

G(A)

F(A)

μA

G(B)

F(A)

μB

f
=

G(B)

F(A)

μA

f

If C, D, F, G and μ are monoidal, then we have following extra
properties:

G(I)

I

μI =

G(I)

I F(A) ⊗ F(B)

G(A ⊗ B)

μA μB
=

F(A) ⊗ F(B)

G(A ⊗ B)

μA⊗B
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Theorem 39. Let μ : F G be a monoidal natural transformation.
If A ∈ Ob(C) has a left or a right dual, F(A) μA G(A) is invertible.

Proof. Choose A = L with L a R in C. Then we perform the
following computation:

μL μR =
μL⊗R

=

μI

= = =

The rest of the proof uses similar techniques.
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Choosing duals for objects extends functorially to morphisms.

Definition 40. For a morphism A f B and chosen dualities A a A∗,
B a B∗, the right dual B∗ f∗ A∗ is defined in the following way:

A∗

B∗

f∗ :=

A∗

B∗

f =:

A∗

B∗

f

We represent this graphically by rotating the box representing f , as
shown in the third image above.
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The dual can ‘slide’ along the unit and counit.

Lemma 41. In a monoidal category with chosen dualities A a A∗

and B a B∗, the following equations hold for all morphisms A f B:

f = f
f

=
f

Proof. Let’s write it out on the board.
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Lemma 42. If a monoidal category has assigned right duals, the
right-duals construction (−)∗ defines a functor.

Proof. Let A f B and B g C. Then we perform the following
calculation:

(g ◦ f)∗ =
f

g

= f g =
f∗

g∗

Similarly, (idA)∗ = idA∗ follows from the snake equations.
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element of W∗.
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Example 43. Let’s see how the right duals functor acts for our
example categories, with chosen right duals as given earlier.

• In FVect and FHilb, the right dual of a morphism V f W is
W∗ f∗ V∗, acting as f∗(e) := e ◦ f , where W e C is an arbitrary
element of W∗.

• In MatC, the dual of a matrix is its transpose.

• In Rel, the dual of a relation is its converse. So the right duals
functor and the dagger functor have the same action: R∗ = R†

for all relations R.
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Lemma 44. For a monoidal category with chosen right duals for
objects, the double duals functor (−)∗∗ : C C is monoidal.

Proof. The isomorphism A∗∗ ⊗ B∗∗ ' (A ⊗ B)∗∗ looks like this:

A∗∗ B∗∗

(A ⊗ B)∗∗

εA⊗B

η(A⊗B)∗

Showing this satisfies the monoidal functor axioms is a monster!
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it is equipped with a monoidal natural transformation A pA A∗∗.
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Definition 45. A monoidal category with right duals is pivotal when
it is equipped with a monoidal natural transformation A pA A∗∗.

By Theorem 39, this will necessarily be invertible.

In a pivotal category, we extend the graphical calculus:

:= πA
:=

π-1
A

We can use this to rotate boxes arbitrarily.

Lemma. In a pivotal category, the following equations hold for all
morphisms A f B:

f = f
f

=
f

Proof. Let’s write it out on the board.
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We can formalize this as follows.

Theorem 46. A well-formed equation between morphisms in a
pivotal category follows from the axioms if and only if it holds in
the graphical language up to planar oriented isotopy.
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We can formalize this as follows.

Theorem 46. A well-formed equation between morphisms in a
pivotal category follows from the axioms if and only if it holds in
the graphical language up to planar oriented isotopy.

The new feature is the word oriented. The wires of our diagram
have arrows, and an isotopy must preserve them:

f = f = f = f
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Definition 47. A braided monoidal category is balanced when it is
equipped with a natural isomorphism θA : A A called a twist,
satisfying the following equations:

θA⊗B =

θA θB

θI =

The second equation here says θI = idI.
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Definition 47. A braided monoidal category is balanced when it is
equipped with a natural isomorphism θA : A A called a twist,
satisfying the following equations:

θA⊗B =

θA θB

θI =

The second equation here says θI = idI.

These equations look strange—we will see later what they mean!
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Theorem 48. For a braided monoidal category with duals, a pivotal
structure uniquely induces a twist structure, and vice versa.

Proof. Suppose we have a twist structure θA : A A. Then define a
pivotal structure as follows:

A

A∗∗

πA :=

A

A∗∗

A∗

θ-1
A

We must verify that it is a monoidal natural transformation, and
that it is natural.



84 / 97IV. Duals in monoidal categories

For the monoidal property, perform the following calculation:

πA⊗B =

θ-1
A⊗B

= θ-1
B

θ-1
A

iso
=

θ-1
B θ-1

A

iso
=

θ-1
A θ-1

B

= πA ⊗ πB

For simplicity we have ignored the isomorphism (A ⊗ B)∗∗ ' A∗∗ ⊗ B∗∗.
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To check naturality, we perform the following calculation:

f∗∗

θA

=

f

θA

iso
= f

θA

nat
= θB

f

Conversely, we can use a pivotal structure to define a twist.
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category with duals where the canonical twist is the identity
θA = idA.
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A symmetric monoidal category with duals has a canonical twist.

Definition 49. A compact category is a pivotal symmetric monoidal
category with duals where the canonical twist is the identity
θA = idA.

Our example categories FHilb, FVect and Rel are all compact
categories.

Note that in general, other balancings may exist: that is, it is
possible for a symmetric monoidal category with duals and a twist
not to be a compact category.
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Lemma 50. In a compact category, the following equations hold:

= =

= = = =

Proof. Let’s prove the second equation in the top row:

=

εA∗

πA
=

εA∗

ηA∗

εA

iso
= εA∗

ηA∗

εA

=

εA

The others can be proved in a similar way.
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In a braided pivotal category, we must be careful with loops:

6=

In fact, a loop on a single strand is directly related to the twist.

Lemma 51. In a braided pivotal category, the following hold:

θ = θ-1 = θ = θ-1 =
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Proof. Let’s verify the expression for θ-1:

θ-1

θ

=
iso
=

iso
=
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Proof. Let’s verify the expression for θ-1:

θ-1

θ

=
iso
=

iso
=

The equation θ ◦ θ-1 = id can be checked in a similar way. Since
inverses in a category are unique, this proves θ-1 is correct.
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Proof. Let’s verify the expression for θ-1:

θ-1

θ

=
iso
=

iso
=

The equation θ ◦ θ-1 = id can be checked in a similar way. Since
inverses in a category are unique, this proves θ-1 is correct.

We demonstrate the graphical form of θ∗ as follows:

θ = θ =
iso
=

iso
=

The rest of the theorem can be proved similarly.
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Thinking about ribbons inspires the following definition.

Definition 52. A ribbon or tortile category is a balanced monoidal
category with duals, such that (θA)∗ = θA∗ .
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Thinking about ribbons inspires the following definition.

Definition 52. A ribbon or tortile category is a balanced monoidal
category with duals, such that (θA)∗ = θA∗ .

This is equivalent to either of these graphical equations:

= =

Lemma 53. A compact category is a ribbon category.

Lemma 54. In a ribbon category, the following equations hold:

= = = =
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These are the equations we would expect to be satisfied by ribbons.

Theorem 55. A well-formed equation between morphisms in a
ribbon category follows from the axioms if and only if it holds in
the graphical language up to framed isotopy in three dimensions.

‘Framed isotopy’ is the name for the version of isotopy where the
strands are thought of as ribbons, rather than just wires.

To get a feeling for framed isotopy, use ribbons to verify the
following equations:

=
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Definition. In a monoidal 2-category, an object A has a right dual B
when it can be equipped with 1-morphisms called folds

εA
B

η
A

B

and invertible 2-morphisms called cusps:
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The invertibility equations look like this:

= =

= =

It’s just like deforming a piece of fabric!
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To capture all the structure of oriented manifolds, we must require
that our fold morphisms themselves have duals.

To see what happens, let’s investigate this duality:

a
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It has a unit and counit, which we draw like this:
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It has a unit and counit, which we draw like this:

The snake equations for the duality then look like this:

= =

Again, this makes sense in terms of deformations of surfaces!
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There is only one set of equations left to completely specify the
behaviour of oriented surfaces. They look like this:

=

These are called the cusp-flip equations.

The Cobordism Hypothesis says that you can describe n-dimensional
manifolds in a similar way.


