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Abstract

This course provides an introduction to ordinal-based proof theory,
and the notion of proof-theoretic strength particularly for type-theories,
or systems which can be seen as type-theories through the Curry-Howard
correspondence. A surprisingly large number of number of people express
some curiosity about the subject, and this is my excuse for offering it.

The technical content will be divided into 3 pieces,

• the countable ordinals, and their arithmetic including Veblen’s hier-
archy.

• lower bounds: which is the programming problem of writing pro-
grams that denote large ordinals, by exploiting the type-structure
available – this will focus on a notion of my own, called a lens;
Godel’s T will be treated thoroughly, and the use of lenses in con-
nection with universes might be sketched.

• upper bounds: the problem of bounding the size of the ordinals that
can be built within a type-theory – this will focus on infinitary term-
systems, cut-elimination for sequent calculi, and normalisation for
a typed lambda calculus whose types are closed under countably
infinite conjunction.

I’ll stress connections with programming, where possible. I’ll try to
promote an algebraic approach to this subject.
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1 Why this subject?

Proof theory is nowadays a broad subject. If there is any single question or
puzzlement that leads one into it, it might be something like this: what (on
earth!) is a proof? There is really a whole cloud of questions here. What
makes a proof hang together? What is it for? What use is it? What makes
it persuasive? What is an inference step? What makes it work? What is a
reason? Or rigour? What is reasoning? If you think these questions are silly, or
you know answers to them, count yourself lucky. Study some more respectable
subject. By all means though, browse around among some of the fascinating
and sometimes beautiful mathematics that has been generated by people with
some form of this affliction.

According to Saunders Mac Lane [1] (in an article from 1997 complaining
about, amongst other things, proof theory), a real proof is not simply a for-
malised document, but a sequence of ideas and insights: proof is the very stuff
of mathematics. He adds:

The subject of proof theory should be the understanding and the
organization of the various types of insights and their astute combi-
nations which do occur in the construction of mathematical proof. I
know of little serious work in this philosophical direction beyond the
rather naive attempt in my own Ph.D. thesis (1934), republished in
1979.

Such modesty! What does one do with a proof, thought of like this? You con-
template it, run your mind up and down its rails, until perhaps you behold the
theorem, as it were, in a warm friendly light, rather than in baleful cold doubt.
This seems to me typical of the mathematician’s idea of proof, as a wand for
communicating conviction and insight. There is a lot that is right and easily
overlooked in this view. A proof is not, or at least not merely a formal ob-
ject, that could ‘in principle’ be written out in some syntax and mechanically
checked. The distinction is that between understanding and copying a math-
ematical proof. Still less is it (merely) a peculiar variety of complicated finite
combinatorial structure, to be studied in some distant ugly branch of graph
theory.

In the light of the Curry-Howard correspondence between proofs/propositions
and programs/types, and various developments coming largely from proof the-
ory – cut-elimination, normalisation, functional interpretations, etc. – we now
know that there is an intrinsic connection between reasoning and computations.
The questions of what a proof is, or what it for, is now a hard question with
some point, one we can struggle with.

There are many excellent texts on general proof theory, particularly struc-
tural and substructural proof theory, and the subject is vibrant on both sides of
the interface between mathematical logic and computing science. I doubt that
I could do better than recommend some of these texts for your study.

In these notes I am going to focus on a part of proof theory which has
not enjoyed such a wide appreciation, namely ordinal-theoretic, or ‘ordinally
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informative’ proof theory. The reason for this focus is mainly because I am
often asked about it, and pleasurably surprised by the interest and curiosity in
it shown by my colleagues. It is also (in part) because I have a particular point
of view about it, or drum to bang. The subject is in my opinion in bad need
of a thorough algebraic and conceptual overhaul, if only to explain itself better
to the educated public, referees of proposals for funding, and not least people
interested in the mathematical foundations of computation. You!

I don’t want to imply that the proof theorists are doing a particularly bad
job of explaining themselves. Some of them (particularly Michael Rathjen and
Jeremy Avigad) do a very good job of explaining themselves, and promoting
their subject, at least to mathematicians. I don’t think they do a particularly
good job of engaging with computer scientists. This is a great shame, or at least
a disappointment to me. So I thought I’d have a go.

Mathematicians are often happy with a definition or a construction that
is repulsive to a programmer: because it is too complex or brutal, or full of
ugly special cases, or makes little computational sense. Strangely, this seems to
be particularly the case in ordinal theoretic proof theory. ‘Strangely’ because
the subject is very much motivated by computational ideas. Yet it is riddled
with nonconstructive arguments, notions and methods. Even where, in a purely
mathematical sense it is ‘evident’ that some argument could ‘in principle’ be
made constructive, the idea of actually teasing out the computational content
into a program is often unpleasant even to contemplate. Perhaps the most bitter
irony is that the very notion of ordinal, perhaps the most basic notion in the
whole subject, is a thoroughly set-theoretical idea; it seems to be a rather deep
problem to give a completely satisfactory constructive treatment of the notion
of ordinal. 1

I have found that a valuable aid to really getting a grip on a subject, to
formulating its concepts in a smooth and simple way is to try, at least in one’s
head, to fully formalise the arguments, so that they can be checked on a machine,
in some language such as Agda. If you choose the wrong definitions, and you
(are fortunate enough to) have a normal human allocation of stamina and brain-
power, you will never finish. The thing will explode into thousands of lines of
sprawling code. The pressure of formalisation forces you to go back and rethink
the most basic definitions, and to simplify and factorise the basic concepts.
Of course, there’s no certainty you will succeed. I have tried to carry out
formalisations in certain parts of proof theory, with partial success: for example,
in the direction of the ‘lower-bounds’ methods mentioned in the abstract, that
are essentially a matter of programming. In other directions, things have, so far,
not gone so well. There is a challenge here for those of you interested in machine
formalisation, particularly in programming languages based on type-theory.

1Not many people have tried. An honourable exception is Paul Taylor, who has some
interesting papers on the subject. There is little overlap between his ideas and mine. It
should also be mentioned that a recursive notion of ordinal has been extensively developed
by logicians, starting from papers of Church and Kleene in 1938.
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1.1 Genesis: Hilbert’s Program

The term ‘proof theory’, in German beweistheorie, was (as far as I know) intro-
duced by Hilbert (a giant among mathematicians, like Mac Lane), who in 1925
[2] in a paper whose English title is ‘On the Infinite’ referred to it thus:

“Mathematics in a certain sense develops into a tribunal of arbitra-
tion, a supreme court that will decide questions of principle – and on
such a concrete basis that universal agreement must be obtainable
and all assertions can be verified.

Even the assertions of the recent doctrine called ‘intuitionism’, mod-
est though they may be, can in my opinion obtain their certificate
of justification only from this tribunal.

As an example of the way in which fundamental questions can be
treated I would like to choose the thesis that every mathematical
problem can be solved. We are all convinced of that. After all,
one of the things that attracts us most when we apply ourselves
to a mathematical problem is precisely that within us we always
hear the call: here is the problem, search for the solution ; you can
find it by pure thought, for in mathematics there is no ignoramibus.
Now to be sure, my proof theory cannot specify a general method
for solving every mathematical problem ; that does not exist. But
the demonstration that the assumption of the solvability of every
mathematical problem is consistent falls entirely within the scope of
our theory.

I would still like to play a last trump. . . . ”

. . . and he goes on to sketch a ‘proof’ of the continuum hypothesis, that the
real numbers can be enumerated by means of the numbers of Cantor’s second
number class! Silly old Hilbert. (The ideas in this ‘proof’ are indeed interesting.
I’m certain that Gödel’s proof of the consistency hypothesis was stimulated by
them. We will see another re-use of them later on in due course.)

Note the words ‘my proof theory’, and the later ‘our theory’, that presumably
refers to the same thing. What was this?

1.1.1 Hilbert’s proof theory, and program

The whole thing was based on worry, not to say paranoia. It was a search for cer-
tainty, reliability. The end of the 19th century and the first two or three decades
of the 20th was a period of intense ferment2 among some of the most distin-
guished mathematicians of the day. Mathematics was afflicted with paradoxes:
Frege’s, Russell’s, . . . . New methods of proof and new concepts were being in-
troduced – Dedekind’s ideals in algebraic number theory, indirect proofs as in
Hilbert’s own basis theorem, Zermelo’s proof that the reals can be well-ordered,

2Not only in mathematics.
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Cantor’s theory of transfinite numbers, the abstract notion of function. Contro-
versy (literally) raged on all sides: Brouwer rejected use of the excluded middle,
Poincare and Weyl rejected use of impredicative definitions, and so on and so
forth. In Hilbert’s words:

Just think: in mathematics, this paragon of reliability and truth, the
very notions and inferences that everyone learns, teaches and uses
lead to absurdities. And where else would reliability and truth be
found if even mathematical thinking fails?

The aim of Hilbert’s proof theory, (or rather his program(me?)) was to “endow
mathematical method with . . . definitive reliability”. Hilbert wanted to save, or
put on solid ground, the use of ‘ideal’ entities, or infinitistic methods in modern
mathematics. How? Where would that certainty or reassurance come from?

For various reasons, going back to the philosopher Kant, Hilbert thought
that there was a part of mathematics that “neither can be reduced to anything
else nor requires reduction”. He called this ‘contentual’, or ‘finitist’ mathemat-
ics. To cut a long story sort, it is expressed in free variable (implicitly, uni-
versally quantified) propositions, in which the variables range over ‘concrete’,
‘surveyable’ finite objects, such that each instance can be verified (or falsified)
by computation. “This is the basic philosophical position that I consider requi-
site for mathematics, and in general all scientific thinking, understanding, and
communication.” Examples of concrete objects were natural numbers, or indeed
formal derivations, in a formal system. Examples of contentual propositions are:

• Every even number greater than 2 can be expressed as the sum of a pair
of primes.

• For no triple a, b, c of non-zero natural numbers and n > 2 is it the case
that an + bn = cn.

• The four colour theorem.

• The consistency of propositional calculus. Or Girard’s system F. Or ZFC.

Hilbert’s Program (for the ‘salvation’ of mathematics) amounted to this:

• Codify all mathematical reasoning in some formal system T .

• Prove, by finitistic means (F ), if some ‘real’ statement A (like 0 = 1)
is provable using ideal notions or infinitistic methods, then it should be
provable by finitistic means (F ). A ‘conservativity’ property:

T ` A =⇒ F ` A
It is clearly necessary that there should be a finitistic proof of the consis-
tency of T . For reasons not entirely clear to me (and not me alone), it
is generally agreed that such a consistency proof would also be sufficient.
Apparently:

T ` A =⇒ F + Con(T ) ` A
But I don’t see it. (Do you? It is apparently a theorem of Kreisel’s, but I
have not been able to find a proof.)
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1.1.2 Its failure

The destruction of Hilbert’s program (which had its heyday in the 1920’s) was
accomplished by Gödel’s celebrated incompleteness theorems, which announced
in a lecture in 1930. By the way, Gödel’s results would have been unthinkable
without Hilbert’s metamathematics: the treatment of formal systems, with their
formulas and derivations as concrete mathematical objects. (Formal proofs as
mathematical objects in their own right.)

Gödel’s 1st incompleteness theorem showed that T contains enough of arith-
metic, there is a true (real) finitistic A such that

• If T is consistent, then T 6` A.

• If T satisfies a further condition (ω-consistency), then T ` ¬A.

So much for the first part of Hilbert’s program (a complete axiomatisation of
‘all’ mathematics). But perhaps that is not fatal? (What do you think?)

Gödel’s 2nd incompleteness theorem showed that (moreover):

T 6` Con(T )

This is generally held to be fatal for the second part of Hilbert’s program (that
a proof of a ‘real’ statement proceeding via infinitary statements and notions
can be transformed into a direct proof, entirely with in F ). This seems fairly
conclusive, particularly if one expects that finitistic reasoning should be codifible
in first order arithmetic. What do you think?

Despite the failure of Hilbert’s program, a modified, or extended version of
it has lived on, and enjoyed a fair amount of success. Very roughly, the modifi-
cation consists in replacing finitistic by constructive. It is not uncontroversial,
but finitism is generally held to be embodied in some variant of primitive re-
cursive arithmetic PRA. Whereas (again, not uncontroversially) constructivity
is generally held to be embodied in some version of Martin-Löf’s type theory –
extended perhaps by strong forms of universe principles. Quite large fragments
of classical second-order arithmetic (PA2, and related fragments of set-theory)
have been reduced to such a basis. A lot of insight into infinitistic mathematical
principles has been obtained by gauging them in terms of such universe prin-
ciples – or indeed the structure of ordinal representation systems required for
their analysis.

1.1.3 Gentzen

In 1936 Gentzen published a (revised version of his first) consistency proof for
classical first order arithmetic (PA = Peano Arithmetic). The (later3) proof
used notations for ordinals in an essential way (as indeed had certain earlier,
unsuccessful attempted consistency proofs by Ackermann (one of Hilbert’s as-
sistants). Gentzen was himself since 1934 Hilbert’s assistant in Göttingen.

3Some of you may be interested to know that the first proof – considered dubious by the
referees – used ideas with a game theoretical flavour.
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Gentzen used transfinite induction, up to the ordinal

ε0 = sup {ω, ωω, ωω
ω

, . . .} = least α s.t. α = ωα

Since the characteristic axiom scheme of first order arithmetic is numerical in-
duction

F (0) ∧ (∀x)[F (x) → F (S(x))] → (∀x)F (x)

i.e.,, induction up to ω, smart-alecs among the mathematicians quipped that
Gentzen was the man who proved the consistency of induction up to ω by using
induction up to ε0. The crucial point though is that in the induction principle
of first order arithmetic, the formula F (x) (with free variable x) may be of
arbitrary logical complexity – it may contain arbitrarily nested implications
and quantifiers. In contrast, Gentzen’s proof used transfinite induction up to ε0
only for decidable (in fact, primitive recursive) F – TIPR(ε0); besides this, the
proof was entirely ‘finitistic’ in Hilbert’s sense – in fact, could be carried out in
primitive recursive arithmetic.

Moreover, slightly later (in 1942) Gentzen (in his ‘Habilitation’) showed that
his consistency result was best possible, in the sense that PA proves transfinite
induction (for arbitrary F ) for any α < ε0.

The picture to which this gives rise is that the non-finitist (‘ideal’) part of first
order numerical induction is in some sense encapsulated in transfinite induction
with respect to primitive recursive predicates, up to (but not including) ε0, and
therefore ‘measured’, or ‘gauged’ by ε0. A spectacular reduction of logic to
(transfinite) arithmetic.

One might therefore be tempted to adopt the following as a definition of the
proof-theoretic strength, or consistency strength of a theory T .

|T |Con = least α s.t. PRA + TIPR(α) ` Con(T )

One should be wary of that temptation. In fact matters are extremely subtle:
what is important is not so much the size of the ordinal (how large you make
it) but its algebraic structure (how you make it large). In fact, you can (if you
enjoy that kind of thing) define artificial primitive recursive total orderings on
the natural numbers, of order-type ω, such that you can prove the consistency
of PA by induction over that ordering. (See e.g., section 10.5 of [3] – such
examples, most of which are due to Kreisel, are sometimes referred to as ‘dreary
pathologies’. See also the early pages of the highly recommended paper [4].)

1.1.4 Resources

There’s a particularly good article by Richard Zach in the Stanford Encyclopedia
of Philosophy: http://plato.stanford.edu/entries/hilbert-program/. It
has an extensive bibliography.

There’s a fine chapter (24) on Gödel’s theorem and its impact on Hilbert’s
program in the book [5].

The philosopher Panu Raatikainen has a recent paper [6] on the impact of
Gödel’s theorems at http://www.mv.helsinki.fi/home/praatika/Hilbert’
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s%20Program%20Revisited.pdf. It seems to tease apart the issues rather care-
fully. There is even a suggestion that it was Brouwer’s attack on the excluded
middle (rather than, say, strong forms of the comprehension axiom, or impred-
icative set-theoretical principles) against which Hilbert specifically wanted to
secure classical infinitistic methods. This seems interesting in the light of the
subsequent successes of the relativised or extended Hilbert’s program.

1.2 The infinite

Call a set (type, collection, totality, multiplicity, plurality, . . . ) A is countable, or
enumerable, if it can be exhaustively listed (a0, a1, a2, . . .), where the list may be
finite or infinite (in other words, a colist, in the final coalgebra (ν X) 1+A×X).
(So empty and finite sets come out as countable.) Call any other infinite set
uncountable.

Two uncountable totalities loom large in the history of mathematics.

• NN – the set of oneplace numerical functions (uncountable by an observa-
tion of Cantor). This has the same cardinal as (can be put into bijection
with) the continuum, i.e., the set R of real numbers. (By the way, my
habit is to use exponential notation NN and arrow notation N → N inter-
changeably.)

• Ω – the set of countable ordinals (Cantor’s second number class, or to
be pedantic, a cumulative version thereof). We will come to this in a
moment.

The question of whether NN has the same cardinal Ω is the continuum hypoth-
esis, and is independent of the usual axioms of set-theory (consistent by Gödel
1937, independent by Cohen 1961). We (at least, I) know hardly anything4

about the cardinal of NatN.
A formal system is a countable sort of thing. Its formulas and formal deriva-

tions are given by finitary inductive rules (that is, schemas with finitely many
premises). A formula, or a proof is a finite, concrete object in Hilbert’ sense,
and the set of theorems of any particular form is countable. Without getting
involved in a lot of detail, we can say that the capacity to denote objects in an
uncountable domain is a priori limited. Hence two extremely natural questions
that arise for any formal system, albeit not yet sharp, mathematical questions
are

• How much of Ω can be expressed?

• How much of N → N can be expressed?

It turns out that these questions match up quite well with two topics in ordinal
theoretic proof theory, namely

4Only that it is regular. There has been some recent interest among set-theorists – Fore-
man, Woodin – in settling the cardinal of the continuum on the basis of new ‘evident’ set-
theoretical axioms.
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• provable ordinals. (Well orderings that can be proved to be wellfounded
in our system.)

• provably recursive functions. (Which Turing machines can be proved to
define total recursive functions in our system.)

1.2.1 Ω

If you are a programmer, the most congenial definition of the second number
class Ω as a datatype is probably the following.

Ω ∆= (µX) 1 +X +XN

To a small extent, this is a (white) lie. This is not at all how a set-theorist
would describe things.

However these are the things that are usually called the “Brouwer ordinals”.
A Haskell declaration might look something like this:

data Nat = ZeroN | SuccN Nat
data Omega = ZeroO | SuccO Omega | LimO (N -> Omega)

There are at least two reasons for not writing things out in Haskell like this.

• By using the initial-algebra notation (µX) 1 + X + XN, we get to say
that we mean the least fixed point (in which all trees are finite-path: all
paths from the root to a leaf are finite). By contrast (ν X) 1 + X + XN

is a completely different kettle of fish, in which the trees can be ‘infinitely
deep’, as well as ‘infinitely wide’. Haskell is based on domain-theoretic
ideas, according to which initial and final coalgebras coincide. It is an
imperfect medium for expressing mathematical constructions.

• The Haskell notation is cluttered up with names for the constructors. We
may have to put up with that if we want to have our definitions processed
by a compiler. Few of us (I hope) are so pedantic that we actually want
to see the N’s and O’s that distinguish ZeroN from ZeroO.

Precisely the same structure could be expressed with a different Haskell
definition:

data Omega = Stop | Wait Omega | Read (N -> Omega)

Here the constructor names have been chosen to suggest a computational inter-
pretation of an ordinal. An ordinal is a (data structure which we can interpret
as a) program of a simple, if rather abstract kind. Either it is terminated (Stop),
or it Waits for a ‘continue’ signal before continuing, or it Reads a natural number
from its environment, and uses the input to choose “where the program counter
should go next”.

Picture the program counter as starting at the root, and tracing a (finite)
path from there to some leaf. As it travels to a leaf, it ‘beeps’, or hops over a
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successor constructor to the immediate subtree; and at a Read constructor, it
uses the input to steer control to one of the countably many subtrees.

Lets see some inhabitants of Ω. First, it is clear how to inject N into Ω.

inj :: Nat -> Omega
inj ZeroN = ZeroO
inj (SuccN k) = SuccO (inj k)

Now we can define the first infinite ordinal (or, at any rate a minimal one),
namely

omega = Lim (\k->inj k)

Then we get SuccO omega, and so on. We’ll come soon to some more powerful
machinery for defining greater ordinals.

Before forgetting about Haskell altogether, I want to make one further re-
mark about our third constructor, beit Lim or Read. I might equally have defined
first a notion of stream as a final coalgebra

Stream A
∆= (ν X)A×X

and then the Brouwer ordinals as

Ω ∆= (µX) 1 +X + StreamX

It makes no difference.
Now the elements of Ω are clearly all countable, in the sense that each ordinal

has countable many structural predecessors. But the type Ω itself is uncount-
able. For if we have a countable sequence of elements Ω, well, we can form the
Lim of that sequence, which is a different ordinal (having all the elements of the
sequence as immediate predecessors).

The type Ω is sometimes called the second number class. You may guess, and
you’d be right, that N is the first number class. This terminology comes from
Cantor. You’ll probably encounter it. But beware, sometimes people mean
slightly different things by this ‘number class’ talk. Nowadays, most people
probably understand number-classes cumulatively, so that the second number
class contains the first number class. Whereas for Cantor himself, the number
classes were disjoint.

To really pin down the number class terminology, I’d have to go into the
notion of cardinal, which is a side-issue in these notes.

1.2.2 Some more Ω’s

Consider now the following type Ω2.

Ω2
∆= (µX) 1 +X +XN +XΩ

(Imagine there is an invisible subscript 1 on our first Ω.)
What are these? Think of them again as abstract programs, with a slightly

enlarged repertoire of actions. There are 4 forms
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• Terminated.

• Beep. Or, if you prefer, wait for a signal (like an acknowledgement) from
the environment, then continue.

• Read a natural number, and use the value read to pick the next node.

• Read a program of the first kind, and use it to pick the next node.

Just as we injected N into Ω, and then formed ω using the injection, plainly
we can inject Ω into Ω2, and form a new ordinal ω1 that is an element of Ω2

having each element of Ω = Ω1 as an immediate structural predecessor. This
ordinal, ω1 is the first uncountable ordinal. Ω2 is sometimes called the third
number class.

EXERCISE 1 Write down definitions for Ω3 and ω2.

That was easy! But the following will probably be a little more taxing.

EXERCISE 2 Write down definitions for Ω113 and ω112. Can you write them
in Haskell?

The issue here is of course not to write it out in detail, which would be
insane, but to capture the uniformity of the step from one number class to the
next, as an operation on some type. Then express the things you are asked to
express using iteration – and perhaps some other ingredients. (Hint: go up! I
don’t myself know the answer as to whether these constructions can be written
in Haskell.)

It is natural to call N the first number class, and think of it as Ω0 – though
that is not standard terminology. After all, it is the type preceding the second
number class Ω in the sequence

N = (µX) 1 +X
Ω = (µX) 1 +X + (N → X)
Ω2 = (µX) 1 +X + (N → X) + (Ω → X)
Ω3 = (µX) 1 +X + (N → X) + (Ω2 → X)

If, however, you managed to solve the last exercise, you’ll know that it is not
actually the first – there is another number class before it, which is. . . the empty
type N0 = {=}∅! So, in a certain sense Ω−1 = ∅.

At this point, I hope that (whether or not you have managed to solve the last
problem), you have a fairly clear idea how to form all the finite number classes
N, Ω, Ω2, . . . and the so-called ‘initial’ ordinals ω, ω1, ω2, . . . that are their rep-
resentatives (inside later number classes). I hope too that you’re wondering too
whether there are types Omegaω, ordinals ωω, and types and ordinals beyond
these. Indeed there are.

You may also be wondering what sort of type systems we need to write these
types down. Some of you will probably see how (in principle) to write out the
definitions of the finite number classes in system F , or (in practice) in system
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Fω. If anyone can see how to write definitions of Ωω in system F or Fω, (which
ought to be possible) please tell me (and/or Thorsten Altenkirch).

However, in the remainder of the course, we will only need the countable
ordinals, and won’t need the higher number classes (though they are necessary
for more advanced topics). Moreover, we will be dealing only with quite ‘small’
countable ordinals.

2 Arithmetic

In this section, I’m going to use 0, + and t are constructors for the countable
ordinals. So t has type (N → Ω) → Ω. To reduce notational noise, I’ll take
certain liberties in connection with t, treating it as a binding operator, so that I
can write ti . . . i . . . i . . . instead of something like t((λ i) . . . i . . . i . . .). Nor will
I distinguish (notationally) between the natural numbers and the corresponding
finite ordinals in Ω.

Using the initiality properties of Ω, we can define some standard arithmetical
functions:

(+) : Ω → Ω → Ω
α+ 0 ∆= α

α+ β+ ∆= (α+ β)+

α+ tiβi
∆= ti(α+ βi)

(×) : Ω → Ω → Ω
α× 0 ∆= 0
α× β+ ∆= (α× β) + α

α× tiβi
∆= ti(α× βi)

(↑) : Ω → Ω → Ω
α ↑ 0 ∆= 0+

α ↑β+ ∆= (α ↑β)× α

α ↑tiβi
∆= ti(α ↑βi)

These are the standard arithmetical operations on finite ordinals, but extended
to countable ordinals. The extension stipulates that the function commutes
with the infinitary operation in its second argument – which is the business end
of the function. This commutation property is sometimes called continuity.

By the way, I’ll assume that each of the operators +, × and ↑ are right asso-
ciative, and moreover, that listed here in order of increasing binding strength.

We are now in a position to write down expressions for all ordinals up to the
celebrated ordinal ε0.

EXAMPLE 1

0, 1, 2, . . .
ω, ω + 1, ω + 2, . . .
ω × 2, ω × 2 + 1, ω × 2 + 2, . . .
ω × 3, ω × 4, ω × 5, . . .
ω ↑ 2, ω ↑ 2 + ω + 1, . . . ω ↑ 2 + ω × 97 + 115, . . .
ω ↑ 3, ω ↑ 4, . . .
ω ↑ω, ω ↑(ω ↑ω), . . .
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2.1 Order relations, and ‘stature’: some problems

However, we aren’t really in a position to state any theorems about ordinals,
and so describe the properties of these basic arithmetical operations, because
we don’t yet know how to define the order relations =, ≤, ≥, <, >. Here there
is a point of some difficulty. There are in fact many possible ways of defining
these relations, and it is a rather subtle matter to sort out which definitions
to use, at least if we are to stick with the Brouwer ordinals (which are data
structures) rather than the set-theoretic ordinals. I will give the definitions that
I have settled on (rather recently) in a moment (to show how it can be done),
but use a more intuitive pictorially based and thoroughly informal definition
that corresponds more closely to the set-theoretic notion.

What is the problem exactly? Brouwer ordinals are data-structures, built
up by inductive clauses. Like any other data structure of that kind, there is
a relatively clear notion of structural predecessor, immediate predecessor, and
so on. So for example α is an immediate structural predecessor of α+, and all
of f(0), f(1), f(2), . . . are immediate structural predecessors of t f . Similarly,
there is a relatively clear notion of extensional equality between Brouwer or-
dinals. But these are not (or scarcely ever) the notions we want in transfinite
arithmetic based on these data-structures.

The point is that ordinals have ‘stature’, or ‘height’ as well as structure. For
example, t{0, 2, 4, 6, . . .} and t{1, 3, 5, 7, . . .} have the same height. (In fact,
there will be continuum many ordinals with the same height – one for each
strictly increasing function f : N → N!) The order relations ought to classify
ordinals by their stature.

We have to consider the question of what to make of ordinals like t{0, 0, 0, . . .}.
If we read ‘t’ as ‘supremum’, i.e., least (non-strict) upper bound, then that or-
dinal should have the same stature as 0. If we read ‘t’ as ‘least strict upper
bound, then it should have the same stature as 1, i.e., 0+. We will have to face
up to the somewhat unpleasant fact that it will not be decidable whether an
ordinal has (the same) stature (as) 0, or a successor ordinal.

There are many, many paths one can take starting at this point. One can for
example contrive that t ordinals always have limit height, and this can be done
in various ways. One might regard the Brouwer ordinals, our basic datatype,
as too broad: we could pick out from ‘raw’ ordinals those that are ‘good’ in the
sense that the sequence α0, α1, α2, . . . to which t is applied should be strictly
increasing in the structural order, and that this ‘goodness’ should obtain ‘all
the way down’. There are various other tricks. . . .

2.2 A type-theoretical approach

Here we’ll look at an approach to defining order relations on the ordinals in
Martin-Löf type theory. It may not be, in the end, completely satisfactory:
that needs to be investigated. It is at least likely that some of the techniques
may be useful for a solution.

We begin with a useful distinction between two ways of representing the
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‘power’ of a set/type in type theory. (In impredicative set theory, the power of
a set is a set, so the operation is called ‘powerset’.)

Fam,Pow : Type → Type

Fam A
∆= (Σ I : Set) I → A

Pow A
∆= A→ Set

Consider Fam first. If A is a type (which may be large, such as for example
the type Set of sets, i.e., small types), an element of Fam A is a set I : Set,
together with an A-valued function a : I → A with domain I.

〈I, a〉 : Fam A

Think of this data as giving a ‘subset’ of A by exhaustive enumeration (possibly
with repetitions), that one might write in the ‘replacement-style’ set-theoretic
notation {a i | i : I}.

Now consider Pow . If A is a type (which may, again, be large), an element
of Pow A is simply a set-valued function defined on A. In line with the Curry-
Howard correspondence, we may think of Set as a space of generalised truth
values or propositions. Then an element of Pow A is simply a truth-valued
function, or characteristic function.

P : A→ Set

Think of P as giving a ‘subset’ of A consisting of those a : A such that P a is
inhabited. We might write this in the ‘separation-style’ set-theoretic notation
{a : A |P a}.

Note that even if the argument type A is small, that value Fam A or Pow A is
large. It is built on top of Set. Note moreover that Fam A is covariant (positive)
in A, whereas Pow A is contravariant (negative, in that it contains A to the left
of an arrow). Indeed, Fam is the basis of the covariant powerset functor (that
on morphisms f : A → A′ sends 〈I, a〉 : Fam A to 〈I, f · a〉 : Fam A′), whereas
Pow is the basis of the contravariant one (that on morphisms f : A→ A′ sends
P : Pow A′ to P · f : Pow A.

When A is small, we can pass reasonably freely, by a kind of ‘somersault’,
between these two notions of subset.

• Given 〈I, f〉 : Fam A, its Pow -version is {a : A | (Σ i : I) f(i) =A a}, where
(=A) denotes ‘the’ equality relation on A. (Alternatively, if {a} : Pow A
denotes the singleton predicate true of just the element a : A, then we can
represent this Pow -version as the union ∪i:I{f i}.

• Given P : Pow A, its Fam-version is 〈(Σ a : A)P a, (λ 〈a, 〉) a〉. That is to
say, we take for the index set the Σ-type (Σ a : A)P a, and for the indexing
function the projection of an ordered pair onto its first coordinate. (Note
that the same a : A gets ‘repeated’, once for each proof of a : A.
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Note however that if A is not a set, the first half of this somersault is blocked,
because only Sets come equipped with an equality relation. Moreover, the sec-
ond half as well is blocked, because then the domain of the projection function
is not a set.

After this detour, we return to the matter at hand, namely order relations
between Brouwer ordinals. First we define a structural strict order relation, of
type Ω → Fam Ω.

We can define the transitive strict predecessor relation on Ω as follows. We
define a set valued function Pd+(α), and an Ω-valued function α[ ] : (Πα :
Ω)Pd+(α) → Ω both by recursion on α.

Pd+(0) = N0

Pd+(α+) = 1 + Pd+(α) (α+)[o]+ = α
(α+)[s(t)]+ = α[t]+

Pd+(tiαi) = (Σn ∈ N)Pd+(αn) (tiαi)[〈n, t〉]+ = αn[t]+

(In the clauses for α+[ ], I have used o and s as constructors for the respective
arms of the disjoint sum 1 + Pd+(α). And I apologise for the clash of notation
between successor α+ and transitive closure Pd+, [ ]+!)

Note: pd+ ∆= (λα) 〈Pd+(α), α[ ]+〉 : Ω → Fam(Ω). Now the universe of
index sets contains theemptysetN0, is closed under set-successor, and countable
disjoint union.

Essentially, the set Pd+(α) consists of the paths down from α that cross at
least one successor ordinal.

Next we turn to a ‘statural’ non-strict order relation, of type Ω → Pow Ω.
Here we are trying to capture the intuition that ever downward transition

in α can be matched by a downward transition of β. We do not assume that a
step from tiαi to αn is necessarily a step down. (In other words, we interpret
tiαi as a supremum, or least upper bound.) We write this

α � β

We define α � β by recursion on α (into a universe containing a singleton
set N1, and closed under certain forms of Σ, and countable Π):

0 � β
∆= N1

α+ � β
∆= (Σ t ∈ Pd+(β))α � β[t]+

tiαi � β
∆= (Πn ∈ N)αn � β

Now one can define ‘equality of stature’ (a very extensional relation) by:

α ' β
∆= (α � β)× (β � α)

Another useful relation is the strict external relation.

α ≺ β
∆= (Σ t : Pd+(β))α � β[t]+

What I hope you have gathered from the above is that a complete treatment
of the order and equality relations between countable ordinals (considered as
inductively defined data structures) is rather delicate. (This is often the case in
the constructive treatment of any interesting mathematical structure.)
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2.3 Order types and von Neumann ordinals

In view of the difficulties indicated in the last section of developing the theory
of order relations on the Brouwer ordinals constructively, we now but to a more
intuitive pictorially based and informal point of view that corresponds more
closely to the set-theoretic notion.

Let us consider structures 〈A,≤ 〉 where ≤ is a total order on A (a partial
order such that all elements are comparable, in the sense (∀a, b : A)a < b ∨ a =
b∨ a > b, where < is the irreflexive part of ≤). These form a category, in which
the morphisms from (〈A,≤A 〉 to 〈B,≤B 〉 are functions on the underlying sets
f : A→ B that preserve the strict relations in the sense ∀a, b : A)a < b→ f a <
f b. We shall be most interested in the full subcategory in which the structures
are well-ordered, i.e., in which all descending chains are finite. (Warning: this is
not a very satisfactory definition constructively.) An ordinal (in one sense) is an
isomorphism class of such structures – a collection of ordered structures which
are pairwise isomorphic. The isomorphism class of 〈A,≤ 〉 is sometimes called
the order-type of 〈A,≤ 〉. It really is a class (i.e., belongs to the set-theoretic
counterpart of Type – something large).

How should we quantify over all ordinals? That would seem to require some
kind of set-theory with class variables, or even (as soon as we start to deal
with classes of ordinals and such things) variables of higher order. There are
indeed such systems (Gödel-Bernays, Morse-Kelly,. . . ) though they are not
particularly well-known, or for that matter attractive. The situation is saved by
choosing a particular, canonical representation of each isomorphism class. These
representations are usually called von Neumann ordinals, who introduced them
(in 1929).

An ordinal (in another sense) is a transitive set well-ordered by the set-
theoretic membership relation ∈. (A set x is transitive if it satisfies (∀y, z)z ∈
y → y ∈ x → z ∈ x. Actually, in the presence of the foundation/regularity
axiom of set-theory – which says that the relation ∈ is wellfounded on the class
of sets – it is equivalent to define a set to be an ordinal if it is a transitive set
all of whose elements are transitive. See for example http://en.wikipedia.
org/wiki/Ordinal number.)

Fact: Every well-ordering 〈A,< 〉 is order isomorphic to an ordinal 〈α,∈ 〉.
As you will probably know, the finite ordinals (the natural numbers) in the

von Neumann representation look as follows:

0 = ∅ = {},
1 = {0} = {{}},
2 = {0, 1} = {{}, {{}}},
3 = {0, 1, 2} = {{}, {{}}, {{}, {{}}}}
. . .

If you are a programmer, you’ll notice that these seem to be something like
particularly well behaved Rose trees. (Of course, Rose trees are made of of lists
and not sets.)
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In general each von Neumann ordinal is nothing but the set of its prede-
cessors. It is not difficult to see that if α is a ordinal, so is α ∪ {α}, which
we can write α+, and this is the least ordinal greater than α. Moreover α is
the greatest ordinal smaller that α+, or its immediate predecessor. Not every
ordinal, however, has an immediate predecessor: for example 0 and ω. The or-
dinals that have immediate predecessors are called successors, and the non-zero
ordinals that do not are called limits.

Purely for amusement,

EXERCISE 3 Define (in Haskell) the infinite stream of ‘von Neumann Rose
trees’.

Forgetting von Neumann ordinals, and remembering the definitions of +, ×
and ↑ given above, let us give explicit constructions on well-ordered sets that
correspond to each of those operations. (There will be a wrinkle in the case of
exponentiation.)

Addition Suppose 〈A,≤A 〉 and 〈B,≤B 〉 are totally ordered collections. (We
actually don’t need them to be well-ordered, or even sets.) We define the ordered
sum 〈A,≤A 〉+ 〈B,≤B 〉 to have underlying set A+B (the disjoint union of A
and B, with constructors i and j respectively. As for the order

i(a) ≤ i(a′) = a ≤A a′
i(a) ≤ j(b) = true
j(b) ≤ i(a) = false
j(b) ≤ j(b′) = b ≤B b′

The definition amounts to putting a copy of the second after a copy of the first.
It is easy to see that the ordered sum is well-ordered just in case both summands
are well-ordered. It is not difficult to see that

α+ 0 = α
α+ β+ = (α+ β)+

α+ λ = tβ<λ(α+ β)

where (as is traditional) in the last clause λ stands for a limit (and the equality
sign means order isomorphism).

EXERCISE 4 Prove the following:

α+ (β + γ) = (α+ β) + γ
α+ 0 = α = 0 + α

So 0,+ forms a monoid. It is not though commutative. For example 1+ω =
ω, while ω < ω+1. (At this point, one should mention the so-called ‘natural’ or
Hessenberg sum and product. These are commutative operations, with better
distributivity properties than Cantor’s operations, with which they sometimes
– but only sometimes – coincide. The Hessenberg natural sum plays a role here
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and there in ordinal theoretic proof theory. There are also connections with
Conway’s ‘surreal arithmetic’. I encourage you to look up the definitions in
Wikipedia, where there is a good explanation.)

Other noteworthy facts and non-facts are the following:

α < β =⇒ γ + α < γ + β
α < β =⇒ α+ γ ≤ β + γ
α+ β = α+ γ =⇒ β = γ

whereas, we do not have α + β = γ + β =⇒ α = γ Moreover, although α + β
is continuous in its second argument, we do not have λ + α = tβ<λ(β + α) –
addition is not continuous in its first argument.

Multiplication Suppose 〈A,≤A 〉 and 〈B,≤B 〉 are totally ordered collec-
tions. (We actually don’t need them to be well-ordered, or even sets.) We
define the ordered product 〈A,≤A 〉 × 〈B,≤B 〉 to have underlying set A × B
(the (binary) cartesian product of A and B, with constructor 〈 , 〉 respectively.
As for the order

〈a1, b1〉 ≤ 〈a2, b2〉 = b1 <B b2 ∨ (b1 =B b2 ∧ a1 ≤A a2)

This order is sometimes called the reverse lexicographic ordering, since it corre-
sponds to the order in which words appear in a Persian dictionary. It amounts
to putting a copy of A in place of each element of a copy of B, with the obvi-
ous tagging. (The reason for the reverse lexicography is to make the arithmetic
neater. One wants to have properties like αβ+γ = αβ×αγ , rather than repulsive
isotopes like αβ+γ = αγ × αβ . In fact in Cantor’s original paper in 1983, he
used the superficially more natural forward lexicographic ordering, and switched
after 4 years when he had figured out what was involved.

It is easy to see that the ordered product is well-ordered just in case both
factors are well-ordered. It is not difficult to see that

α× 1 = α
α× β+ = (α× β) + α
α× λ = tβ<λ(α× β)

EXERCISE 5 Prove the following:

α× (β × γ) = (α× β)× γ
α× 1 = α = 1× α

So 1,× forms a monoid. It is not though commutative. For example 2×ω = ω,
while ω < ω × 2.

Fact:
α× (β + γ) = (α× β) + (α× γ)
α× 0 = 0

So (α×) distributes over the monoid 0,+.
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EXERCISE 6 Find a counterexample to (β + γ)× α = (β × α) + (γ × α).

It happens to be the case that 0×α = 0. But as we shall see later, when we come
to define ordinals in Gödel’s system T , this is in some sense ‘a mere accident’.

Other noteworthy facts and non-facts are the following:

α < β =⇒ γ × α < γ × β provided α > 0
α ≤ β =⇒ α× γ ≤ β × γ
α× β = α× γ =⇒ β = γ provided α > 0

Just like addition, although multiplication is continuous in its second argument,
it is not continuous in the first.

Exponentiation . (This is considerably more tricky than the case of ad-
dition and multiplication.) Suppose 〈A,≤A 〉 and 〈B,≤B 〉 are totally or-
dered collections and A has least element 0. We define the ordered exponential
〈A,≤A 〉 ↑ 〈B,≤B 〉 to have as its underlying set A × B the subset of AB (i.e.,
B → A) consisting of functions that are non-zero for all but finitely many
arguments (Sometimes called functions with finite support). As for the order

f ≤ g = f = g ∨ (f 6= g ∧ f bm <A g bm where bm = max{b ∈ B | f b 6= g b})

This definition is (at least, on the face of it) rather non-constructive, and ad-
mittedly rather hard to motivate. In practice, there are only two bases α for
which ordinal exponentiation α ↑β ‘really matters’, namely 2 and ω, and these
are fairly easy to understand.

Take the case 2β (where β is the order type of 〈B,≤B 〉). Then a function
with finite support is essentially a finite subset of B, and we can identify such a
finite subset with the list of its elements taken in strictly decreasing order. Now
order such sequences in the (forward) lexicographic order. That’s 2β !

Now take the case ωβ . Then a function with finite support is essentially a
(finite) multiset or bag of elements of B. We can think of such a bag as a finite
set of ordered pairs 〈b, n〉 where b ∈ B, and n > 0 is a natural number, the
multiplicity of b. We can identify such a set of ordered pairs with the sequence
in which such pairs are listed in descending order of their first component (the
‘b’). Now order such descending sequences lexicographically, where the pairs
〈b, n〉 are in the reverse lexicographic order of pairs. That’s ωβ !

That may still seem quite complicated. I believe though that you will
understand the matter if (in the case ωβ you think of ordinary polynomi-
als like x5.3 + x2.19 + 23, with exponents and coefficients which are natural
numbers. Think of such a polynomial p as arranged in descending order of
exponents, and as representing a one-place function on the natural numbers
(x 7→ p(x)) : N → N. There is a fairly natural ordering of such polynomials,
in which polynomials are ordered by the coefficient of the greatest exponent at
which they differ. Why is that natural? Because it reflects the order of eventual
dominance between the functions that the polynomials represent.

f <ed g
∆= (∃n)(∀m)f(n+m) < g(n+m)
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The ordering of polynomials is, if you think it through, ωω: the base ω because
the coefficients are natural numbers, and the exponent ω because the exponents
are natural numbers as well. (The case 2β is quite similar, except that the
coefficients are less than 2.)

What is really going on with the functions of finite support is this: such a
function B → A which is zero for all but a finite number of arguments is a formal
polynomial, with finitely many identically zero summands. Where the function
has a non-zero value (in A), that value is the coefficient for the exponent (from
B) which is its argument. We order such formal polynomials by the natural
order, corresponding to eventual dominance.

In the cases of addition and multiplication, our constructions made perfect
sense even when the ordered sets involved were not well-orderings, or even total.
In the case of exponentiation, I am not sure. If the exponent structure is not
well founded, it may be that the functions with finite support should be re-
placed by functions which are zero except on elements of some (totally ordered,
descending) chain in B.

We had better finish up by listing some of the ‘algebraic’ properties of ex-
ponentiation.

First are ‘laws of exponents’

α ↑(β × γ) = (α ↑β) ↑ γ
α ↑ 1 = α
α ↑(β + γ) = (α ↑β)× (α ↑ γ)
α ↑ 0 = 1

It happens to be the case that 1α = 1, and that (for α > 0) 0α = 0. (This is
perhaps a strange thing to say, but my reasons will emerge later on.)

It is not the case that (α× β) ↑ γ = (α ↑ γ)× (β ↑ γ).
Some properties of ↑ that involve the order relations are these.

α < β =⇒ γ ↑α < γ ↑β provided α > 1
α ↑β = α ↑ γ =⇒ β = γ provided α > 1
α ≤ β =⇒ α ↑ γ ≤ β ↑ γ

EXERCISE 7 Verify the following.

2ω = ω
2ω+1 = ω × 2
2ω×2 = ω2

2ω
2

= ωω

2ω
ω

= ωω
ω
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2.4 Cantor normal form

The ordinal 0 is the empty sum. It so happens that when β is at least 2, that
every ordinal α can be uniquely decomposed into a finite sum.

α = βα1 × δ1 + · · ·+ βαk × δk
α ≥ α0 > . . . > αk ≥ 0
0 < δ0, . . . δk < β

The proof is quite tricky in our second number class. The idea is to exploit
the following operations which are right adjoint to exponentiation, multiplica-
tion and addition.

βγ ≤ α ≡ γ ≤ logβ α
β × γ ≤ α ≡ γ ≤ α/β
β + γ ≤ α ≡ γ ≤ α− β

The first (logβ) is defined only for β at least 2, α at least 1. The second ((/β))
is defined only for β at least 1. The third ((−β)α) is defined only for α ≥ β.

To define these constructively is extremely subtle, but we can pretend that
they exist. The difficult principle that for any normal function, there is a great-
est ordinal such that fα ≤ β. No doubt, but we may not be able to compute
it.

One defines

α0 = logβ α
δ0 = α/(βα0)
γ0 = α− (βα0 × δ0)

α1 = logβ γ0

δ1 = α/(βα1)
γ1 = α− (βα1 × δ1)

· · ·
αk = logβ γk
δk = α/(βαk)
γk = α− (βαk × δk) = 0

We usually consider Cantor normal form only to the base ω.
The manipulation of expressions in Cantor normal form is quite fun. It

pivots on the fact that ωα + ωβ = ωβ when α < β.
So if α = ωα1 × n1 + · · · + ωαk × nk β = ωβ1 × n1 + · · · + ωβl × nl then in

α+ β, β will ‘eat’ some suffix of the representation of α.

EXERCISE 8 If you have lots of time, consider how to rewrite arbitrary expres-
sions built up from 0, 1 and ω by +, × and ↑ to expressions in Cantor normal
form (to the base ω).

2.5 Normal functions

A function f : Ω → Ω is said to be normal if it is strictly increasing and
continuous. For example 1 + α is normal, but α+ 1 is not.

All functions α 7→ fα . . . are continuous. If f is continuous, then fω is a
closure operator. If f is a closure operator, then (f ·(+1))α0 is a normal function
of α. If f is normal, the function

f ′ : α 7→ (fω · (+1))α(fω0)

is also normal, and enumerates the fixed points of f .
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This step from a normal function to the function which enumerates its fixed
points is called Veblen’s derivative operation. We write it ∇. Given a normal
function f : Ω → Ω, one can define a two place function

φ : Ω → Ω → Ω
φ0 = f
φα+ = ∇(φα)
φtiαi) = enumerates {β : Ω | (Πn : ω)φαnβ = β}

One can write out the definition of φ by recursion on its two arguments.

φ0
∆= f

φα+0 ∆= (φα)ω0
φtiαi

0 ∆= tiφαi
0

φα+(β+) ∆= (φα)ω(φα+β + 1)
φtiαi

β+ ∆= tiφαi
(φtiαi

β + 1)
φα+tiβi

∆= tiφα+(βi)
φtiαi

tiβi
∆= tiφtjαj

(βi)

The Veblen hierarchy over 1 + α is as follows:

1 + α
ω + α
ω2 + α

At the βth level we have φβα = ωα + β.
The function ωα is normal in the argument α. We usually erect the Veblen

hierarchy over the function ωα.

φ0(α) = ωα ordinals closed under addition
φ1(α) = εα ordinals closed under α 7→ ωα

φ2(α) critical ε numbers: α = εα

The function φα 0 is normal in α, and is usually written Γα. One can
take this as the basis of a new Veblen hierarchy, and iterate the process – this
leads to the so-called “3-place” Veblen function. One can iterate the idea of
new argument places. This leads to the idea of transfinitely indexed argument
places, and this to the idea of Schütte’s ‘Klammer-symbolen’. In fact these were
anticipated by Veblen himself, in a publication from 1908. (One hundred years
ago!)

The least ordinal which closed under the finite-place Veblen functions is
sometimes called the ‘little’ Veblen number, and you may find it written φΩω (0).

The least ordinal which closed under the Veblen functions of transfinite arity
(using arities obtainable ‘from below’, or autonomously) is sometimes called the
‘big’ Veblen number, and you may find it written φΩΩ(0).

Both Veblen numbers (the little one and the big one) correspond to certain
versions of Martin-Löf type theory, without W-types, but extended with rather
strong universe axioms. The investigation of such systems sometimes goes under
the name ‘metapredicativity’.

The ‘next’ celebrated ordinal is the famous ‘Bachmann-Howard’ ordinal,
that you will often find written φεΩ+1(0), which measures the strength of a host
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of interesting systems. Bachmann was the first person to devise a system of
ordinal notations to describe the ordinal, and Howard was the first proof-theorist
to investigate a system with that proof-theoretic ordinal: essentially (I think)
Gödel’s T, but extended by the countable Brouwer ordinals. It is an interesting
challenge to devise universe principles that when added to type-theory without
W-types attains the strength of the Bachmann-Howard ordinal.

2.6 TODO: Ordinal representation systems

3 Lower Bounds

We work in a type theory closed under→, and that satisfies the η-rule. Moreover
it should contain (a symbol for) the type of natural numbers N, with 0, (+1),
and an iteration functional

I : (X → X) → N → X → X
I f 0 = id
I f (n+ 1) = f · I f n

3.1 Church ordinals

We begin with a notion of ‘Church ordinal’. Such a thing is a term —t— with
4 free variables:

X : Set, z : X, s : X → X, l : (N → X) → X ` t[X, z, s, l] : X

For example:
t0[X, z, s, l] = z
t1[X, z, s, l] = s z
t2[X, z, s, l] = s (s z)
tω[X, z, s, l] = l (n 7→ I s n z)

Suppose a and b are Church ordinals, then

ta+b[X, z, s, l] = tb[X, ta[X, z, s, l], s, l]
ta×b[X, z, s, l] = tb[X, z, x 7→ ta[X,x, s, l], l]
ta ↑ b[X, z, s, l] = tb[X → X,

s,
f x 7→ ta[X,x, f, l],
g x 7→ l(n 7→ g nx)
] z

But what justifies this annotation? The lemmas below state that certain alge-
braic equations hold definitionally; these equations include the defining equa-
tions of +,×, ↑.

For abbreviation below, we define L l = g 7→ l · flipg.
Some of the expected laws hold:
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[[a+ 0]][X, z, s, l] = [[0]][X, [[a]][X, z, s, l], s, l]
= [[a]][X, z, s, l]

[[0 + a]][X, z, s, l] = [[a]][X, [[0]][X, z, s, l], s, l]
= [[a]][X, z, s, l]

[[a+ (b+ c)]][X, z, s, l] = [[b+ c]][X, [[a]][X, z, s, l], s, l]
= [[c]][X, [[b]][X, [[a]][X, z, s, l], s, l], s, l]

[[(a+ b) + c]][X, z, s, l] = [[c]][X, [[a+ b]][X, z, s, l], s, l]
= [[c]][X, [[b]][X, [[a]][X, z, s, l], s, l], s, l]

Figure 1: 0,+ forms a monoid.

[[a× 1]][X, z, s, l] = [[1]][X, z, x 7→ [[a]][X,x, s, l], l]
= [[a]][X, z, s, l]

[[1× a]][X, z, s, l] = [[a]][X, z, x 7→ [[1]][X,x, s, l], l]
= [[a]][X, z, x 7→ sx, l]
= [[a]][X, z, s, l]

[[a× (b× c)]][X, z, s, l] = [[b× c]][X, z, s′, l]
where s′ = x 7→ [[a]][X,x, s, l]

= [[c]][X, z, x 7→ [[b]][X,x, s′, l], l]
= [[c]][X, z, x 7→ [[b]][X,x, y 7→ [[a]][X, y, s, l], l], l]

[[(a× b)× c]][X, z, s, l] = [[c]][X, z, s′, l]
where s′ = x 7→ [[a× b]][X,x, s, l]

= x 7→ [[b]][X,x, y 7→ [[a]][X, y, s, l], l]
= [[c]][X, z, x 7→ [[b]][X,x, y 7→ [[a]][X, y, s, l], l], l]

Figure 2: 1,× forms a monoid

LEMMA 1 0,+ forms a monoid.

[[0 + a]] = [[a]] = [[a+ 0]]
[[a+ (b+ c)]] = [[(a+ b) + c]]

Proof by the calculations in figure 1

LEMMA 2 1,× forms a monoid.

[[1× a]] = [[a]] = [[a× 1]]
[[a× (b× c)]] = [[(a× b)× c]]

Proof by calculations in figure 2

LEMMA 3 (a×) commutes with the 0,+ monoid.

[[a× 0]] = [[0]]
[[a× (b+ c)]] = [[a× b+ a× c]]
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[[a× 0]][X, z, s, l] = [[0]][X, z, x 7→ a[X,x, s, l], l]
= [[0]][X, z, s, l]

[[a× (b+ c)]][X, z, s, l] = [[b+ c]][X, z, x 7→ [[a]][X,x, s, l], l]
= [[c]][X, [[b]][X, z, x 7→ [[a]][X,x, s, l], l], x 7→ [[a]][X,x, s, l], l]

[[a× b+ a× c]][X, z, s, l] = [[a× c]][X, [[a× b]][X, z, s, l], s, l]
= [[c]][X, [[a× b]][X, z, s, l], x 7→ [[a]][X,x, s, l], l]
= [[c]][X, [[b]][X, z, x 7→ [[a]][X,x, s, l], l], x 7→ [[a]][X,x, s, l], l]

Figure 3: (a×) commutes with the 0,+ monoid

[[a ↑ 0]][X, z, s, l] = [[0]] [ X → X,
s,
f x 7→ [[a]][X,x, f, l],
L l

] z
= s z
= [[1]][X, z, s, l]

[[a ↑ 1]][X, z, s, l] = [[1]] [ X → X,
s,
f x 7→ [[a]][X,x, f, l]
L l

] z
= (f x 7→ [[a]][X,x, f, l]) s z
= [[a]][X, z, s, l]

Figure 4: Exponentiation by 0 and 1

Proof by the calculations in figure 3

REMARK 1 We don’t get, modulo definitional equality, all the laws we might
expect. For example:

[[0× a]] = [[a]][X, z, x 7→ [[0]][X,x, s, l], l]
= [[a]][X, z, id, l]
6= [[0]][X, z, s, l]

LEMMA 4 (Cantor’s exponential calculus)

[[a ↑ 0]] = [[1]]
[[a ↑(b+ c)]] = [[(a ↑ b)× (a ↑ c)]]
[[a ↑ 1]] = [[a]]
[[a ↑(b× c)]] = [[(a ↑ b) ↑ c]]

Proof by the calculations in figures 4, 5 and 6

PROP 1 The definitions of +,× and ↑ are correct.
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[[a ↑(b× c)]][X, z, s, l] = [[b× c]][X → X, s, f x 7→ [[a]][X,x, f, l]L l] z
= [[c]][X → X, s, f 7→ [[b]][X → X, f, g y 7→ [[a]][X, y, g, l],L l],L l] z

[[(a ↑ b) ↑ c]][X, z, s, l] = [[c]][X → X, s, f x 7→ [[a ↑ b]][X,x, f, l]L l] z
= [[c]][X → X, s, f x 7→ [[b]][X → X, f, g y 7→ [[a]][X, y, g, l],L l]xL l] z

Figure 5: Exponentiation by ×

[[a ↑(b+ c)]][X, z, s, l] = [[b+ c]][X → X,s,
f x 7→ [[a]][X,x, f, l],
L l

] z
= [[c]][X → X,[[b]][X → X, s, f x 7→ [[a]][X,x, f, l],L l],

f x 7→ [[a]][X,x, f, l],
L l

] z
[[(a ↑ b)× (a ↑ c)]][X, z, s, l] = [[a ↑ c]][X, z, x 7→ [[a ↑ b]][X,x, s, l], l]

= [[c]][X → X,x 7→ [[a ↑ b]][X,x, s, l],
f x 7→ [[a]][X,x, f, l]
L l

] z

= [[c]][X → X,x 7→ [[b]][X → X, s, f x 7→ [[a]][X,x, f, l],L l]x,
f x 7→ [[a]][X,x, f, l]
L l

] z

Figure 6: Exponentiation by +

26



Proof. By using some of the lemmas above we have

a+ 0 = a,
a+ (b+ 1) = (a+ b) + 1

a× 0 = 0,
a× (b+ 1) = a× b+ a× 1 = a× b+ a

a ↑ 0 = 1,
a ↑(b+ 1) = a ↑ b× a ↑ 1 = a ↑ b× a

Moreover +,×, ↑ commute with limits in their right arguments, so their def-
initions agree with the usual definitions of +,×, ↑ by (transfinite) primitive
recursion.

EXAMPLE 2 We can put together the definitions of ω, ↑ and +, and simplify
to get:

[[a+ w ↑ b]][X, z, s, l] = [[b]][X → X, s,L l · I,L l]([[a]][X, z, s, l])

4 TODO: Lenses

4.1 The basic idea

A lens is a 5-tuple:

F : Set→ Set
Z : X → (X → X) → ((N → X) → X) → FX
S : X → (X → X) → ((N → X) → X) → FX → FX
L : X → (X → X) → ((N → X) → X) → (N → FX) → FX
D : X → (X → X) → ((N → X) → X) → FX → X

We can wrap this up more compactly. For example, let BX = 1+X+(N → X).
Then we can put Z, S and L together into a single “up” function U : (BX →
X) → B(FX) → FX, and rewrite the “down” function D : (BX → X) →
FX → X. Note that U is something quite different from a B-algebra morphism.
That is the point! As for F , that need not even be a functor.

EXAMPLE 3 Identity lens (obvious), composition of lenses:

FX = F1(F2X)
Zzsl = Z1(Z2zsl)(S2zsl)(L2zsl)
Szsl = S1(Z2zsl)(S2zsl)(L2zsl)
Lzsl = L1(Z2zsl)(S2zsl)(L2zsl)
Dzsl = D2zsl(D1(Z2zsl)(S2zsl)(L2zsl))
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EXAMPLE 4 Gentzen/Archimedes lens:

FX = X → X
Zzsl = s
Szsl = fx 7→ l(n 7→ Ifnx)
Lzsl = Ll
Dzsl = f 7→ fz

DEF 1 A lens implements a function —phi— on ordinals if

(φalpha)Xzsl = Dzsl(α(FX)(Zzsl)(Szsl)(Lzsl))

[We have to analyse what equality means here.]

Note: the Gentzen/Archimedes lens implements the function ωα.

PROP 2 Composition of lenses implements composition of the functions they
implement. That is, if Fφ, Zφ, Sφ, Lφ, Dφ implements φ and Fψ, Zψ, Sψ, Lψ, Dψ

implements ψ then Fψ · Fφ, . . . implements φ · ψ.

Given a sequence/stream of lenses tn, we want to define its limit limt. How-
ever, that is beyond the scope of these notes.

4.2 TODO: Dependent lenses

coalgebra

5 Upper Bounds

In the previous section, I have tried to give an impression of some techniques
one can use to set a lower bound on the provable ordinals of a type theory.
Essentially, you write programs in the type theory that denote those ordinals.
The core of it is to figure out what it is about the type-structure available to you
that gives ‘headroom’ sufficient to construct the ordinals. This work sometimes
leaves you with a strong impression that these programs exhaust the strength
of the type theory. For a long time, I have tried to pin down that impression,
and turn it into a theorem – and not just a theorem, but one with a simple,
elegant and ‘algebraic’ proof. I have pursued some ideas (that have the flavour
of logical relations), but so far without much success.

However nowadays it is almost routine to obtain upper bounds for the
strength of type theories. How is it done?

Roughly speaking one carries out a realisability interpretation of the type
theory in a classical, infinitary sequent calculus. By an infinitary system, I mean
a system that contains rules that have infinitely many premises. Such a system
is not a formal system, in the ordinary sense of the term, as it is no longer
decidable whether a particular step in a proof has the form of a rule. A proof
in such a system is a tree, as usual, and moreover a wellfounded tree, as usual,
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but the tree can have infinite branching, so that the height of the tree may be
transfinite. Such a proof is not a ‘real’ proof, that human beings communicate
to each other, but intrinsically a metamathematical object.

The main tool in the study of upper bounds is cut elimination. We begin
with a quick sketch of cut elimination for a classical ‘two sided’ sequent calculus.

5.1 Sequents, PA and PAω

A sequent is an expression Γ =⇒ ∆ where Γ and ∆ are finite lists of formulas
A1, . . . Am and B1, . . . , Bl respectively. One says that Γ yields ∆, or rather that
the conjunction of the A’s yields the disjunction of the B’s. In particular, if both
Γ and ∆ are empty, the sequent asserts the impossible, i.e., a contradiction.

• Axioms

A =⇒ A

• Cut

Γ =⇒ ∆, A A,Λ =⇒ Θ
CutΓ,Λ =⇒ ∆,Θ

A is called the cut formula of the inference.

• Structural rules (exchange, weakening, contraction)

Γ, A,B,Λ =⇒ ∆ XLΓ, B,A,Λ =⇒ ∆
Γ =⇒ ∆, A,B,Λ XRΓ =⇒ ∆, B,A,Λ

Γ =⇒ ∆ WLΓ, A =⇒ ∆
Γ =⇒ ∆ WLΓ =⇒ ∆

Γ, A,A =⇒ ∆ CLΓ, A =⇒ ∆
Γ =⇒ ∆, A,A CRΓ, A =⇒ ∆, A

• Negation

Γ =⇒ ∆ ¬L¬A,Γ =⇒ ∆
B,Γ =⇒ ∆ ¬R

Γ =⇒ ∆,¬B

• Implication

Γ =⇒ ∆, A B,Λ =⇒ Θ →L
A→ B,Γ,Λ =⇒ ∆,Θ

A,Γ =⇒ ∆, B →R
Γ =⇒ ∆, A→ B

• Conjunction
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A,Γ =⇒ ∆ ∧L1
A ∧B,Γ =⇒ ∆

Γ =⇒ ∆, A Γ =⇒ ∆, B ∧RΓ =⇒ ∆, A ∧B

B,Γ =⇒ ∆ ∧L2
A ∧B,Γ =⇒ ∆

• Disjunction

A,Γ =⇒ ∆ B,Γ =⇒ ∆ ∨L
A ∨B,Γ =⇒ ∆

Γ =⇒ ∆, A ∨R1Γ =⇒ ∆, A ∨B

Γ =⇒ ∆, B ∨R2Γ =⇒ ∆, A ∨B

• Quantifiers

F (t),Γ =⇒ ∆
∀L∀xF (x),Γ =⇒ ∆

Γ =⇒ ∆, F (a)
∀RΓ =⇒ ∆,∀xF (x)

F (a),Γ =⇒ ∆
∃L∃xF (x),Γ =⇒ ∆

Γ =⇒ ∆, F (t)
∃RΓ =⇒ ∆,∃xF (x)

Here a is a parameter (free variable), t is a term, and x is a bound variable.

In the intuitionistic version of the calculus, all sequents are required to have at
most one disjunct. There are no rules corresponding to CR or XR.

EXAMPLE 5 A deduction of excluded middle

A =⇒ A ¬R
=⇒ A,¬A ∨R2=⇒ A,A ∨ ¬A XR=⇒ A ∨ ¬A,A ∨R∞=⇒ A ∨ ¬A,A ∨ ¬A CR=⇒ A ∨ ¬A,A ∨ ¬A

Cut Elimination (‘Hauptsatz’ = ‘fundamental theorem’): If a sequent is
provable, it can be proved without cuts. As a corollary, if Γ =⇒ ∆ has a proof
at all, it has a proof in which the only formulas that appear are subformulas
of the formulas in Γ and ∆. As a corollary of that, the empty sequent has no
proof.

EXAMPLE 6

A,Γ =⇒ ∆, B →R
Γ =⇒ ∆, A→ B

Λ =⇒ Θ, A B.Ξ =⇒ Φ →L
A→ B,Λ,Ξ =⇒ Θ,Φ

CutΓ,∆,Ξ =⇒ ∆,Θ,Φ

can be transformed to
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Λ =⇒ Θ, A A,Γ =⇒ ∆, B
CutΛ,Γ =⇒ Θ,∆, B B,Ξ =⇒ Φ

CutΓ,∆,Ξ =⇒ ∆,Θ,Φ

(There are still cuts, but the cut formulas are subformulas of the original cut.

The proof of cut elimination is rather intricate, as the process of transforming
away instances of cut interferes with contraction. On account of this intricacy
the height of a cut-free proof is (in the worst case) super-exponentially greater
than the height of the original proof with cuts. Something like

444..
h

where h is the height of the original proof, and the number of 4’s is the length
of the longest cut-formula that appears in it.

Not only does elimination of cuts make a proof (hugely) longer, it usually
renders the proof also less intelligible. Cut formulas are rather like lemmas, and
contain the idea of the proof.

So much for classical logic. A mathematical theory is usually based on
axioms, and axioms tend to be rather poisonous for cut-elimination. (This is
actually a little bit of a lie. The book [7] is an investigation of cut-elimination
for several interesting mathematical theories, in cases where it does work. See
the ‘reasoned’ bibliography at http://www.helsinki.fi/∼negri/ptpub.html.
Occasionally the axioms of a theory are of bounded complexity, and then one
has partial cut-elimination, meaning that cuts can be eliminated which are
of higher complexity than the axioms. This can pay off, for example when
extracting bounds on the length of proofs of Π0

2-statements5 in systems with
restricted induction schemes.)

One can avoid the problems with cut elimination by moving to an infinitary
system. The so called ω-rule (due to Hilbert in 1931 and Schütte) consists of
two kinds of infinitary inferences

Γ =⇒ ∆, F (0); Γ =⇒ ∆, F (1); . . . Γ =⇒ ∆, F (n); . . .
ωR

Γ =⇒ ∆,∀xF (x)

F (0),Γ =⇒ ∆; F (1),Γ =⇒ ∆; . . . F (n),Γ =⇒ ∆; . . .
ωR∃xF (x),Γ =⇒ ∆

We make a version of PA, called PAω in which these rules replace ∀R and ∃L.
There are certain other (relatively minor) changes:

• We discard all free variables. All terms and formulas are closed. We use
n as notation for the n-th numeral S(S(· · ·S(0) · · ·)) (in which there are
n occurrences of the successor symbol S. All terms of PAω evaluate to a
numeral.

• As axioms of PAω we take
5Formulas that begin ∀n∃m . . ..
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– all sequents =⇒ A where A is a true atomic formula

– all sequents B =⇒ where B is a false atomic formula

– all sequents F (s1, . . . , sn) =⇒ F (t1, . . . , tn) where F is atomic, and
for each i = 1, . . . , n, si and ti evaluate to the same numeral.

On this basis, we can now prove the (numerical) induction axiom

=⇒ F (0) ∧ ∀x [F (x) → F (S(x))] → ∀xF (x)

As follows. First, for each n, there is a finite derivation Dn of the sequent
F (0),∀x [F (x) → F (S(x))] =⇒ F (n). This can be proved by induction on n.

The basis is clear, so suppose we have Dn. Let ∆ be F (0),∀x [F (x) →
F (S(x))]. Now construct Dn+1 as follows.

Dn
∆ =⇒ F (n)

structural rules
F (n+ 1),∆ =⇒ F (n+ 1)

→L
F (n) → F (n+ 1),∆ =⇒ F (n+ 1)

∀L∀x [F (x) → F (S(x))],∆ =⇒ F (n+ 1)
structural rules

F (0),∀x [F (x) → F (S(x))] =⇒ F (n+ 1)

A final application of ωR yields the desired proof of induction.

D0

∆ =⇒ F (0) ; · · ·
Dn

∆ =⇒ F (n) ; · · ·
ωR

F (0),∀x [F (x) → F (S(x))] =⇒ ∀xF (x) ∧L
F (0) ∧ ∀x [F (x) → F (S(x))],∀x [F (x) → F (S(x))] =⇒ ∀xF (x)

XL∀x [F (x) → F (S(x))], F (0) ∧ ∀x [F (x) → F (S(x))] =⇒ ∀xF (x) ∧L
F (0) ∧ ∀x [F (x) → F (S(x))], F (0) ∧ ∀x [F (x) → F (S(x))] =⇒ ∀xF (x)

CL
F (0) ∧ ∀x [F (x) → F (S(x))] =⇒ ∀xF (x) →R

=⇒ F (0) ∧ ∀x [F (x) → F (S(x))] → ∀xF (x)

We can now prove a cut-elimination theorem for PAω. To state it we, need
the notions of the height (an ordinal) and cut-rank (a natural number) of a
derivation in PAω. We write this

D `αn (Γ =⇒ ∆)

and define this relation inductively, following the build-up of D.
Define the length |A| of a formula A as follows:

• |A| = 0 if A is atomic,

• |¬A| = |A|+ 1,

• |A∧B| = max(|A|.|B|)+1, and similarly for the other binary connectives
∨, →,

• |∃xF (x)| = |∀xF (x)| = |F (0) + 1.
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Suppose the last inference of D has the form

D0

Γ0 =⇒ ∆0 ; · · ·
Dn

Γ0 =⇒ ∆0 ; · · ·
IΓ =⇒ ∆

where the number of premises is either 0, 1, 2, or ω, and the Dn are the imme-
diate subderivations of D.

If

Dn `αn

k (Γn =⇒ ∆n)

and for each n, αn < α, then

D `αk (Γ =⇒ ∆)

provided that in the case where I is a cut, with cut formula A, then also |A| < k.
We now state a number of facts.

• The first concerns the embedding of ordinary first order PA into PAω. If
Γ =⇒ ∆ is provable in PA, then there is a proof D and natural numbers
m,n such that

D `ω+m
n Γ =⇒ ∆

• The second lemma contains the heart of cut-elimination. Suppressing
explicit mention of derivations, If `αk Γ =⇒ ∆, A where |A| = k, and
`βk A,Λ =⇒ Θ, then `α#β

k Γ,Λ =⇒ ∆,Θ. (α#β is the Hessenberg
natural sum of α and β, mentioned in the section on arithmetic. See also
http://en.wikipedia.org/wiki/Ordinal arithmetic.)

• The third lemma builds upon the last lemma. By eliminating all cuts of
the highest rank in a a derivation, we arrive at a longer derivation. The
lemma states an upper bound (which happens to be best-possible) on the
height of the new derivation.

If `αk+1 (Γ =⇒ ∆) then `ωα

k (Γ =⇒ ∆).

(Having said that, I am in some doubt whether instead of ωα above I
should have said 2α. If any one is reading this, what do you think?)

• Now we eliminate all cuts.

If `αn (Γ =⇒ ∆) then `t(n,α)
0 (Γ =⇒ ∆), where

t(n, α) = ωω
ω..

α

and there are n ω’s in the tower of exponents.

By further elaboration of this proof, one can wring out of it upper-bounds
on the extent to which transfinite induction can be proved in PA.

You may think this proof is less than breathtakingly elegant, and to a certain
extent I agree. However, in this aesthetic vein, the idea of avoiding the problem
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of bad interaction between mathematical axioms and cut elimination by use of
infinitary rules is bold and incisive, if drastic. Aesthetics aside, it has to be
admitted that it is still a little mysterious exactly why the move to infinitary
rules works. It should be mentioned that Wilfried Buchholz has shed some light
on the question, in papers from 1991 and 1997. The key idea is that can regard
finite derivations (of the ordinary, humanly communicable kind) as notations for
infinitary derivations. The titles of the relevant papers are “Notation Systems
for Infinitary Derivations” and “Explaining Gentzen’s Consistency Proof within
Infinitary Proof Theory”.

Quite a bit of the clutter in the proof is superficial. One can improve the
presentation by using what is called a ‘one-sided’ or ‘Tait-style’ sequent calculus.
In such a calculus (which is intrinsically classical), the negation connective is
thrown out, and replaced by a defined operation that relies on each atomic
formula splitting into a positive and a negative form . Also, implication is
thrown out, so that the only logical operations that remain are conjunction and
disjunction, and the universal and existential quantifiers. Or we could say that
disjunction and conjunction come in both a binary and a countable form.

In recent proof theory of stronger systems than arithmetic, infinitary sys-
tems based on Kripke-Platek set theory often play the role that is played here by
the system PAω. The subject is (regrettably) extremely technical. But perhaps
enough time has passed that one can begin to look for a revision of the elemen-
tary material in a form which is more amenable to an algebraic or categorical
description.

5.2 Natural Deduction: infinitary types and terms

We now turn from infinitary sequent calculus to infinitary lambda-calculus (i.e.,
natural deduction), in this following Tait [8] and (particularly) Martin-Löf [9].
One novelty here is that the types (formulas) as well as the terms (derivations)
are infinitary.

Part of my reason for presenting these ideas is that they are in some re-
spects simpler than the sequent calculus counterparts, and, undeservedly, not
(particularly) well known.

Types The types σ, τ, . . . of this system contain at least one atomic type, and
are closed under the (non-dependent) function spaces σ− < τ , and countable
conjunction: if τ0, τ1, . . . , τn, . . . is a countable sequence (stream) of types, then

Πnτn

is a type. This is the type of functions whose domain is N and whose value for
argument n has type τn. To use stream terminology, it is a type of heterogeneous
streams t0, t1, . . . , tn, . . . such that

t0 : τ0
(t1, t2, . . . , tn+1, . . .) : Π(τ1, τ2, . . . , τn+1, . . .)
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Terms The terms of this calculus, so far as function types are concerned are
built up using λ-abstraction and application in the usual way.

As for the terms Π-types, the relevant term forms are these. First an infini-
tary operation

t0 : τ0; t1 : τ1; . . . tn : τn; . . .

(t0, t1, . . . , tn, . . .) : Π(τ0, τ1, . . . , τn, . . .)

Second, countably many projection operations, one for each natural number n.
Martin-Löf writes it as follows

EXAMPLE 7 Using variables of type τ0 and Πn(τn → τn+1) respectively, then

λxλ y (x, y 0x.y 1(y 0x), . . .)

is an example of a term of type τ0 → Πn(τn → τn+1) → Πnτn

Computations The reduction rules of the infinitary calculus are based on the
following two contraction rules. First, β-contraction

(λx t(x)) s t(s)

(where t(s) denotes the result of substituting s for all free occurrences of the
variable x in the term t(x), renaming any troublesome bound variables in t(x)
as necessary to avoid capturing free occurrences of variables in s. The use of
parentheses is heavily overloaded here.)

Second, projection
(t0, t1, . . . , tn, . . .)n tn

The reduction relation is formulated as follows. It is the relation inductively
generated by the following clauses.

• A variable reduces to itself.

• If s(x) reduces to t(x), then λx s(x) reduces to λx t(x).

• If r reduces to s, then r t reduces to s t.

• If r reduces to s, then t r reduces to t s.

• If sn reduces to tn for n = 0, 1, · · ·, then (s0, s1, . . .) reduces to (t0, t1, . . .).

• If r reduces to s, then r n reduces to s n.

• If r reduces to s and s reduces to t, then r reduces to t.

EXERCISE 9 Does this calculus have any infinite reduction sequences?
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EXERCISE 10 In a certain sense, combinators S : (τ → σ → ρ) → (τ →
σ) → τ → ρ) (with S r s t  r t (s t)) and K : σ → τ → σ (with K s t  s)
are sufficient to allow for λ-abstraction to be simulated in the simply-types λ-
calculus.

Can you find a (countable) set of combinators (with associated contractions)
that would allow (in some reasonable sense) λ-abstraction to be simulated.

A passage from Martin-Löf’s paper:

We are now prepared to establish the isomorphism between the sys-
tem of terms and this system of natural deduction. The following
dictionary shows the relation.

atomic type atomic formula
type formula
variable assumption
bound variable discharged assumption
rule of term formation deduction rule
term deduction
λ-contraction −-reduction
projection logand-reduction
normal term cut free deduction

Curry and Feys 1958 discovered the analogy between their so called
theory of functionality and the positive implicational calculus, and
Howard 1969 extended it to Heyting arithmetic. I am indebted to
William Howard for pointing out this analogy to me.

EXERCISE 11 Think about what the various types, terms, and contraction rules
mean according to the Curry-Howard correspondence.

Assuming you’ve had a go at the previous exercise, what are the axioms that
correspond to the combinators you came up with?

Ordinals The degree d(τ) of a type τ (which corresponds approximately to
the length of a formula in the sequent calculus treatment) is defined as follows.

• The degree of an atomic type is 0.

• d(σ → τ) = max((d(σ) + 1, d(τ)).

• d(Πn τn) = maxn d(τn).

The cut type of a redex of the form (λx t(x)) s or (t0, t1, . . .)n, is the type of
(λx t(x)) or (t0, t1, . . .), respectively. The cut degree of a term is the maximum
of the degrees of all its cut types.

The length l(t) of a term t is defined as follows.

• The length of a variable is 0.

36



• l(λx t(x)) = l(t(x)) + 1

• l(t s) = max(l(s) + 1, l(t))

• l(t0, t1, . . .)) = maxn(l(tn))

EXAMPLE 8 The length of the recursion operator λxλ y (x, y 0x.y 1(y 0x), . . .)
in ω + 2.

By induction on the structure of t(x) one can prove

l(t(s)) ≤ l(s) + l(t(x))

The aim now is to prove not only that each term reduces to a normal form
(containing no redex), but to estimate the length of this term in terms of the
length and cut degree of the starting term. Martin-Löf now carefully defines a
certain binary function φαβ that is based on (but not the same as) the Veblen
hierarchy over the normal function 2α. Let us write this hierarchy (binary
function) χβα. So χ0α = 2α, and for β > 0, χβ enumerates the common fixed
points of all χγ for γ < β. Let χmβ denote the m-th (finite) iteration of the
function χβ .

The function φ is now defined by φ0(α) = α, and

φβ(α) = χm1
β1

(χm2
β2

(· · ·χmk

βk
(α) · · ·))

where
β = ωβ1m1 + ωβ2m2 + · · ·+ ωβkmk

is the Cantor normal form of β > 0 to the base ω.
If you have any experience of working in ordinal analysis, either in upper

bounds or lower bounds, you encounter this function again and again. Note: it
is not so much the Veblen hierarchy itself that plays a role in ordinal analysis,
but the function based on it as φ is to χ.

The function φ enjoys the following rather pretty property. It is a solution
to the equation

φβ · φγ = φβ+γ

under the initial conditions φ0(α) = α and φ1(α) = 2α.

EXERCISE 12 Try to prove this claim.

There are three properties of the functions φβ used in the proof of the nor-
malisation theorem.

• φβ is strictly increasing for all β.

• φβ · φγ = φβ+γ

• φβ(α) × 2 ≤ φβ(α + 1). It is to obtain this property for β = 1 that we
chose φ1(α) = χ0(α) = 2α.
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So much for the ordinal arithmetic involved. Note though that it is not at all
straightforward to develop the notions of degree, cut degree and length directly
for the Brouwer ordinals. This is because of the use of max in the definitions of
these notions, which is not constructively definable. (The order relation between
Brouwer ordinals is not decidable.) Instead, we have to work with an ordinal
representation system, together with a total order on the terms.

Normalisation We are heading for the following result

PROP 3 A term of length α and cut degree β reduces to a normal term of length
≤ φβ(α).

Notice first that when we eliminate a cut type from a term t by contracting
a subterm, the cut degree of the new term t′ is not increased. This is because
the degrees of the new cut types that may be introduced do not exceed the cut
type which is eliminated.

Furthermore, all cut terms of the form Πnτn can be eliminated from a term
t without increasing its length. Prove this by induction on the structure of t.
(It should be fairly obvious.)

Now we come to the heart of the proof, which is concentrated in the following
lemma.

LEMMA 5 A term r of length α and cut degree β+γ reduces to a term of length
≤ φγ(α) and cut degree ≤ β.

This proved by (order) induction on γ, and within that by (structural) induction
on r.

The proof is quite intricate – it would not be an attractive task to formalise
and check it using a proof checker. To illustrate this, I reproduce here part of
the proof.

Remember that the outermost induction is transfinite induction on γ. By
the preliminary lemma we can assume that r has no cut type of the form Πn τn.
The inner induction is a structural induction on r, in which the basis case is
that of a variable. For the induction step there are four cases to distinguish,
depending on the form of r: λx t(x), (t0, t1, . . .), t s, and t n. Here is the third
case, that of an expression of applicative form.

By (inner) induction hypotheses, s and t reduce to some expressions u and
v where l(u) ≤ φγ(l(s)) and l(v) ≤ φγ(l(t)) and the cut degrees of u and v are
both ≤ β. If v is not of abstraction form, we are done, because then r reduces
to v u which has length at most

max(φγ(l(s)) + 1, φγ(l(t)) ≤ φ(max(l(s) + 1, l(t))) = φγ(α)

and cut degree ≤ β. Otherwise, r must have the form

λx (t(x) s1 · · · sn)

where sn = s and each si is either a term or a natural number. Let the maximum
of β and the degrees of the types of the si that are terms be β + δ. Then δ < γ
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and γ − δ ≤ γ. By (outermost) induction hypothesis, t(x) reduces to v(x), and
this has length ≤ φγ−δ(l(t(x))) and cut degree ≤ β+δ. Also, if si is a term, then
si reduces to some ui which has length ≤ φγ−δ(l(si)) and cut degree ≤ β + δ.
If si is a natural number, put ui = si. Then r reduces to

λx (v(x)u1 · · ·un)

and at most n contractions reduce this term to a term w of length at most

maxi l(ui) + l(v(x))
≤ φγ−δ(maxi l(si)) + φγ−δ(l(t(x)))
≤ φγ−δ(max(l(t(x)),maxi l(si)))× 2
≤ φγ−δ(max(l(t(x)),maxi l(si)) + 1)
= φγ−δ(α)

and cut degree ≤ β+δ. Finally, w reduces to a term of length ≤ φδ(φγ−δ(α)) =
φγ(α) and cut degree ≤ β.

6 TODO

• Something about notation system as coalgebras. Examples for ε0 and Γ0.

• structural induction/recursion versus order-induction.
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