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Abstract

It is well-known that the Gödel’s system T definable functions (N → N) → N are continuous, and
that their restrictions from the Baire type (N → N) to the Cantor type (N → 2) are uniformly
continuous. We offer a new, relatively short and self-contained proof. The main technical idea
is a concrete notion of generic element that doesn’t rely on forcing, Kripke semantics or sheaves,
which seems to be related to generic effects in programming. The proof uses standard techniques
from programming language semantics, such as dialogues, monads, and logical relations. We write
this proof in intensional Martin-Löf type theory (MLTT) from scratch, in Agda notation. Because
MLTT has a computational interpretation and Agda can be seen as a programming language, we
can run our proof to compute moduli of (uniform) continuity of T-definable functions.

Keywords: Gödel’s system T, continuity, uniform continuity, Baire space, Cantor space,
intensional Martin-Löf theory, Agda, dialogue, semantics, logical relation.

1 Introduction

This is a relatively short, and self-contained, proof of the well-known fact that
any function f : (N → N) → N that is definable in Gödel’s system T is con-
tinuous, and that its restriction from the Baire type (N → N) to the Cantor
type (N → 2) is uniformly continuous [15,2]. We believe the proof is new,
although it is related to previous work discussed below. The main technical
idea is a concrete notion of generic element that doesn’t rely on forcing, Kripke
semantics or sheaves, which seems to be related to generic effects in program-
ming [13]. Several well-known ideas from logic, computation, constructive
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mathematics and programming-language semantics naturally appear here, in
a relatively simple, self-contained, and hopefully appealing, development.

The idea is to represent a function f : (N → N) → N by a well-founded
dialogue tree, and extract continuity information about f from this tree. To
calculate such a tree from a system T term t: (Ì ⇒ Ì) ⇒ Ì denoting f , we
work with an auxiliary interpretation of system T, which gives a function
f̃ : (Ñ → Ñ) → Ñ, where Ñ is the set of dialogue trees. Applying f̃ to a
certain generic sequence Ñ → Ñ, the desired dialogue tree is obtained. We
now explain this idea in more detail.

In the set-theoretical model of system T, the ground type Ì is interpreted
as the set N of natural numbers, and if the types σ and τ are interpreted as
sets X and Y , then the type σ ⇒ τ is interpreted as the set of all functions
X → Y . We consider an auxiliary model that replaces the interpretation of the
ground type by the set Ñ, but keeps the interpretation of ⇒ as the formation
of the set of all functions. In this model, the zero constant is interpreted by
a suitable element 0̃ of Ñ, the successor constant is interpreted by a function
Ñ → Ñ, and each iteration combinator is interpreted by a function (X → X)
→ X → Ñ→ X. An element of the set Ñ is a well-founded dialogue tree that
describes the computation of a natural number relative to an unspecified oracle
α : N → N. An internal node is labeled by a natural number representing a
query to the oracle, and has countably many branches corresponding to the
possible answers. Each leaf is labeled by a natural number and represents a
possible outcome of the computation. These dialogues represent computations
in the sense of Kleene [10].

If a particular oracle α : N → N is given, we get a natural number from
any d ∈ Ñ via a decodification function

decode : (N → N) → Ñ → N.

It turns out that there is a function

generic : Ñ → Ñ
that can be regarded as a generic sequence in the sense that, for any particular
sequence α : N → N,

Ñ
generic - Ñ

N

decode α
?

α
- N.

decode α
?

That is, the generic sequence codes any concrete sequence α, provided the
sequence α itself is used as the concrete oracle for decodification. The idea
is that the application of the function generic to a dialogue tree adds a new
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layer of choices at its leaves.
Next we show that for any given term t : (Ì ⇒ Ì) ⇒ Ì denoting a function

f : (N → N) → N in the standard interpretation and f̃ : (Ñ → Ñ) → Ñ in
the dialogue interpretation, we have that

f α = decode α (f̃ generic).

This is proved by establishing a logical relation between the set-theoretic and
dialogue models. Thus we can compute a dialogue tree of f by applying f̃ to
the generic sequence.

The set Ñ is constructed as B N for a suitable dialogue monad B. Then the
interpretation of the constant zero is η 0 where η is the unit of the monad, the
interpretation of the successor constant is given by functoriality as B succ, and
the interpretation of the primitive recursion constant is given by the Kleisli
extension of its standard interpretation. The object part B X of the monad
is inductively defined by the constructors

η : X → B X,
B : (N → B X) → N → B X,

where η constructs leaves and B constructs a tree B F n given countably many
trees F and a label n. With X = N, we have B η : N → B N, and the generic
sequence is the Kleisli extension of B η. Thus, the generic sequence seems to
be a sort of generic effect in the sense of [13]. Notice that our interpretation
is a call-by-name version of Moggi’s semantics.

Using this, it follows that if a function f : (N → N) → N is the set-
theoretical interpretation of some system T term t : (Ì ⇒ Ì) ⇒ Ì, then it is
continuous and its restriction to N → 2 is uniformly continuous, where 2 is
the set with elements 0 and 1. The reason is that a dialogue produces an an-
swer after finitely many queries, because it is well-founded, and that a dialogue
tree for a function (N→ 2)→ N is finite, because it is finitely branching. Re-
call that continuity means that, for any sequence of integers α : N → N, there
is m : N, called a modulus of continuity of f at the point α, such that any
sequence α′ that agrees with α at the first m positions gives the same result,
that is, f α = f α′. Uniform continuity means that there is m : N, called
a modulus of uniform continuity of f on N → 2, such that any two binary
sequences α and α′ that agree at the first m positions give the same result.

Our arguments are constructive, and we write the full proof from scratch
in intensional Martin-Löf type theory (MLTT), in Agda notation [4], without
the use of libraries. We don’t assume previous familiarity with Agda, but we
do require rudimentary knowledge of MLTT. The Agda source file for this
program/proof [7] is written in Knuth’s literate style, which automatically
generates the LATEX file that produces this article. Agda both checks proofs
and can run them. Notice that MLTT or Agda cannot prove or disprove that
all functions (N → N) → N are continuous, as they are compatible with both
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classical and constructive mathematics, like Bishop mathematics [3]. The
theorem here is that certain functions (N → N) → N are continuous: those
that can be defined in system T.
Related work. The idea of computing continuity information by applying a
function to effectful arguments goes back to Longley [11], who passes excep-
tions to the function. A similar approach is described in an example given by
Bauer and Pretnar [1].

The idea of working with computation trees is of course very old, going
back to Brouwer [2] in intuitionistic mathematics, and to Kleene [10] in com-
putability theory in the form of dialogues, where the input is referred to as
an oracle. Howard [9] derives computation trees for system T, by operational
methods, by successively reducing a term so that each time an oracle given by
a free variable of type Ì⇒ Ì is queried, countably many branches of the compu-
tation are created, corresponding to the possible answers given by the oracle.
Hancock and Setzer use variations of dialogue trees to describe interactive
computation in type theory [12] (see also [8]).

Our work is directly inspired by Coquand and Jaber’s work on forcing
in type theory [5,6]. Like Howard, they derive computation trees by oper-
ational methods. They extend dependent type theory with a constant for a
generic element, and then decorate judgements with subscripts that keep track
of approximation information about the generic element as the computations
proceed (similarly to [15]). In this way they extract continuity information.
They prove the termination and soundness of this modification of type theory
using Tait’s computability method, which here is manifested as a logical re-
lation between our two models. They also provide a Haskell implementation
for the system T case as an appendix, which uses a monad that is the compo-
sition of the list monad (for nondeterminism) and of the state monad. Their
Haskell program implements a normalization procedure with bookkeeping in-
formation, tracked by the monad, that produces computation trees. Because
they only account for uniform continuity in their Haskell implementation, such
trees are finite. They describe their work as a computational interpretation of
forcing and continuity as presented in Beeson [2]. The difference is that their
approach is syntactical whereas ours is semantical, and the reader may sense
an analogy with normalization by evaluation. Notice that these arguments
only show that the definable functions are continuous. To get a constructive
model in which all functions are continuous, they work with iterated forcing,
which is related to our recent work [16], but this is another story.
Organization. (2) Formal proof in Agda. (3) Informal, rigorous proof.
Acknowledgements. I benefitted from remarks on a previous version of this
paper by Thierry Coquand, Dan Ghica, Achim Jung, Chuangjie Xu, and the
anonymous referees.
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2 Proof in Martin-Löf type theory in Agda notation

2.1 Agda preliminaries

The purpose of this subsection is two-fold: (1) To develop a tiny Agda library
for use in the following sections, and (2) to briefly explain Agda notation [4]
for MLTT. We assume rudimentary knowledge of (intensional) Martin-Löf
type theory and the BHK interpretation of the quantifiers as products Π and
sums Σ. We don’t use any feature of Agda that goes beyond standard MLTT.
If we were trying to be purist, we would use W-types rather than some of our
inductive definitions using the Agda keyword data. Notice that the coloured
text in the electronic version of this paper is the Agda code.

The universe of all types is denoted by Set, and types are called sets (this
is a universe à la Russell). Products Π are denoted by ∀ in Agda. Consider
the definition of the (interpretation of) the standard combinators:

Ķ : ∀{X Y : Set} → X → Y → X
Ķ x y = x
Ş : ∀{X Y Z : Set} → (X → Y → Z) → (X → Y) → X → Z
Ş f g x = f x (g x)

The curly braces around the set variables indicate that these are implicit pa-
rameters, to be inferred by Agda whenever Ķ and Ş are used. If Agda fails
to uniquely infer the missing arguments, one has to write e.g. Ķ {X} {Y } x y
rather than the abbreviated form Ķ x y. The following should be self-
explanatory:

_◦_ : ∀{X Y Z : Set} → (Y → Z) → (X → Y) → (X → Z)
g ◦ f = ń x → g(f x)

data N : Set where
zero : N
succ : N → N

rec : ∀{X : Set} → (X → X) → X → N → X
rec f x zero = x
rec f x (succ n) = f(rec f x n)

Agda has a termination checker that verifies that recursions are well-founded,
and hence all functions are total. We also need types of binary digits, finite
lists, and finite binary trees:

data N2 : Set where
0 1 : N2

data List (X : Set) : Set where
[] : List X
_::_ : X → List X → List X

data Tree (X : Set) : Set where
empty : Tree X
branch : X → (N2 → Tree X) → Tree X
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Sums are not built-in and hence need to be defined:

data Σ {X : Set} (Y : X → Set) : Set where
_,_ : ∀(x : X)(y : Y x) → Σ {X} Y

The definition says that an element of Σ {X} Y is a pair (x,y) with x : X and
y : Y x. Notice that comma is not a reserved symbol: we define it as a binary
operator to construct dependent pairs. Because Y = ń(x : X) → Y x if one
assumes the η-law, and because the first argument is implicit, we can write
Σ {X} Y as Σ Y or Σ \(x : X) → Y x, where backslash is the same thing as
lambda. We will use backslash exclusively for sums.

π0 : ∀{X : Set} {Y : X → Set} → (Σ \(x : X) → Y x) → X
π0(x , y) = x
π1 : ∀{X : Set} {Y : X → Set} → ∀(t : Σ \(x : X) → Y x) → Y(π0 t)
π1(x , y) = y

The identity type Id X x y is written x ≡ y withX implicit, and is inductively
defined as “the least reflexive relation”:

data _≡_ {X : Set} : X → X → Set where
refl : ∀{x : X} → x ≡ x

sym : ∀{X : Set} → ∀{x y : X} → x ≡ y → y ≡ x
sym refl = refl
trans : ∀{X : Set} → ∀{x y z : X} → x ≡ y → y ≡ z → x ≡ z
trans refl refl = refl
cong : ∀{X Y : Set} → ∀(f : X → Y) → ∀{x0 x1 : X} → x0 ≡ x1 → f x0 ≡ f x1
cong f refl = refl
cong2 : ∀{X Y Z : Set} → ∀(f : X → Y → Z)

→ ∀{x0 x1 : X}{y0 y1 : Y} → x0 ≡ x1 → y0 ≡ y1 → f x0 y0 ≡ f x1 y1
cong2 f refl refl = refl

2.2 Dialogues and continuity

We consider the computation of functionals (X → Y ) → Z with dialogue
trees. We work with the following inductively defined type of (well founded)
dialogue trees indexed by three types X, Y and Z. These are Y -branching
trees with X-labeled internal nodes and Z-labeled leaves:

data D (X Y Z : Set) : Set where
η : Z → D X Y Z
B : (Y → D X Y Z) → X → D X Y Z

A leaf is written η z, and it gives the final answer z (η will be the unit of a
monad). A forest is a Y -indexed family F of trees. Given such a forest F and
x : X, we can build a new tree B F x whose root is labeled by x, which has
a subtree F y for each y : Y . We can imagine x : X as query, for which an
oracle α gives some intermediate answer y = α x : Y. After this answer y, we
move to the subtree F y, and the dialogue proceeds in this way, until a leaf
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with the final answer is reached:

dialogue : ∀{X Y Z : Set} → D X Y Z → (X → Y) → Z
dialogue (η z) α = z
dialogue (B F x) α = dialogue (F(α x)) α

We say that a function (X → Y ) → Z is eloquent if it is computed by some
dialogue:

eloquent : ∀{X Y Z : Set} → ((X → Y) → Z) → Set
eloquent f = Σ \d → ∀ α → dialogue d α ≡ f α

Here we are interested in the case X=Y=Z=N. Think of functions
α : N → N as sequences of natural numbers. The set of such sequences is
called the Baire space:

Baire : Set
Baire = N → N

Functions Baire → N are coded by a particular kind of dialogue trees, namely
B N where B is defined as follows:

B : Set → Set
B = D N N

We work with a refined version of continuity, which gives more information
than the traditional notion introduced in Section 1, where the modulus of
continuity is a finite list of indices rather than an upper bound for the indices.
The agreement relation determined by a list of indices is inductively defined
as follows, where α ≡[ s ] α′ says that the sequences α and α′ agree at the
indices collected in the list s:

(i) α ≡[ [] ] α′,
(ii) α i ≡ α′ i → α ≡[ s ] α′ → α ≡[ i :: s ] α′.

We write this inductive definition as follows in Agda, where we give the name []
to the proof of the first clause and the name :: to the proof of the second clause,
that is, using the same constructor names as for the inductively defined type
of lists:

data _≡[_]_ {X : Set} : (N → X) → List N → (N → X) → Set where
[] : ∀{α α’ : N → X} → α ≡[ [] ] α’
_::_ : ∀{α α’ : N → X}{i : N}{s : List N} → α i ≡ α’ i → α ≡[ s ] α’ → α ≡[ i :: s ] α’

continuous : (Baire → N) → Set
continuous f = ∀(α : Baire) → Σ \(s : List N) → ∀(α’ : Baire) → α ≡[ s ] α’ → f α ≡ f α’

It is an easy exercise, left to the reader, to produce an Agda proof that this
refined notion of continuity implies the traditional notion of continuity, by
taking the maximum value of the list s. Functions defined by dialogues are
continuous, because a dialogue produces an answer after finitely many queries:
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dialogue-continuity : ∀(d : B N) → continuous(dialogue d)
dialogue-continuity (η n) α = ([] , lemma)

where
lemma : ∀ α’ → α ≡[ [] ] α’ → n ≡ n
lemma α’ r = refl

dialogue-continuity (B F i) α = ((i :: s) , lemma)
where

IH : ∀(i : N) → continuous(dialogue(F(α i)))
IH i = dialogue-continuity (F(α i))
s : List N
s = π0(IH i α)
claim0 : ∀(α’ : Baire) → α ≡[ s ] α’ → dialogue(F(α i)) α ≡ dialogue(F(α i)) α’
claim0 = π1(IH i α)
claim1 : ∀(α’ : Baire) → α i ≡ α’ i → dialogue (F (α i)) α’ ≡ dialogue (F (α’ i)) α’
claim1 α’ r = cong (ń n → dialogue (F n) α’) r
lemma : ∀(α’ : Baire) → α ≡[ i :: s ] α’ → dialogue (F(α i)) α ≡ dialogue(F (α’ i)) α’
lemma α’ (r :: rs) = trans (claim0 α’ rs) (claim1 α’ r)

This formal proof is informally explained as follows. We show that

∀(d : B N) → continuous(dialogue d)

by induction on d. Expanding the definition, this amounts to, using Agda
notation,

∀ d → ∀ α → Σ \s → ∀ α′ → α ≡[ s ] α′ → dialogue d α ≡ dialogue d α′.

For the base case d = η n, the definition of the function dialogue gives
dialogue d α = n, and so we must show that, for any α,

Σ \s → ∀ α′ → α ≡[ s ] α′ → n ≡ n.

We can take s = [] and then we are done, because n ≡ n by reflexivity. This
is what the first equation of the formal proof says. Thus notice that Agda, in
accordance with MLTT, silently expands definitions by reduction to normal
form. For the induction step d = B F i, expanding the definition of the dialogue
function, what we need to prove is that, for an arbitrary α,

Σ \s′ → ∀ α′ → α ≡[ s′ ] α′ → dialogue (F(α i)) α ≡ dialogue (F α′ i) α′.

The induction hypothesis is ∀(i : N) → continuous(dialogue(F(α i))), which
gives, for any i and our arbitrary α,

Σ \s → ∀ α′ → α ≡[ s ] α′ → dialogue(F(α i)) α = dialogue(F(α i)) α′.

Using the two projections π0 and π1 we get s and a proof that

∀ α′ → α ≡[ s ] α′ → dialogue(F(α i)) α = dialogue(F(α i)) α′.

Hence we can take s′ = i :: s, and the desired conclusion holds substituting
equals for equals (with cong) using transitivity and the definition α i ≡ α′ i
→ α ≡[ s ] α′ → α ≡[ i :: s ] α′. This amounts to the second equation of the
proof, where in the pattern of the proof of the lemma we have r : α i ≡ α′ i
and rs : α ≡[ s ] α′.
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We need the following technical lemma because it is not provable in in-
tensional MLTT that any two functions are equal if they are pointwise equal.
The proof is admitedly written in a rather laconic form. The point is that
the notion of continuity depends only on the values of the function, and the
hypothesis says that the two functions have the same values. Notice that the
axiom of function extensionality (any two pointwise equal functions are equal)
is not false but rather not provable or disprovable, and is consistent [14].

continuity-extensional : ∀(f g : Baire → N) → (∀ α → f α ≡ g α) → continuous f → continuous g
continuity-extensional f g t c α = (π0(c α) , (ń α’ r → trans (sym (t α)) (trans (π1(c α) α’ r) (t α’))))
eloquent-is-continuous : ∀(f : Baire → N) → eloquent f → continuous f
eloquent-is-continuous f (d , e) = continuity-extensional (dialogue d) f e (dialogue-continuity d)

The development for uniform continuity is similar to the above, with the
crucial difference that a dialogue tree in C N is finite:

Cantor : Set
Cantor = N → N2

C : Set → Set
C = D N N2

We work with a refined version of uniform continuity (cf. Section 1), where
the modulus is a finite binary tree s of indices rather than an upper bound
of the indices. We could have worked with a list of indices, but the proofs
are shorter and more direct using trees. The agreement relation defined by a
tree of indices is inductively defined as follows, where α ≡[[ s ]] α′ says that
α and α′ agree at the positions collected in the tree s:

data _≡[[_]]_ {X : Set} : (N → X) → Tree N → (N → X) → Set where
empty : ∀{α α’ : N → X} → α ≡[[ empty ]] α’
branch :
∀{α α’ : N → X}{i : N}{s : N2 → Tree N}
→ α i ≡ α’ i → (∀(j : N2) → α ≡[[ s j ]] α’) → α ≡[[ branch i s ]] α’

Again we are using the same constructor names as for the type of trees.

uniformly-continuous : (Cantor → N) → Set
uniformly-continuous f = Σ \(s : Tree N) → ∀(α α’ : Cantor) → α ≡[[ s ]] α’ → f α ≡ f α’

dialogue-UC : ∀(d : C N) → uniformly-continuous(dialogue d)
dialogue-UC (η n) = (empty , ń α α’ n → refl)
dialogue-UC (B F i) = (branch i s , lemma)

where
IH : ∀(j : N2) → uniformly-continuous(dialogue(F j))
IH j = dialogue-UC (F j)
s : N2 → Tree N
s j = π0(IH j)
claim : ∀ j α α’ → α ≡[[ s j ]] α’ → dialogue (F j) α ≡ dialogue (F j) α’
claim j = π1(IH j)
lemma : ∀ α α’ → α ≡[[ branch i s ]] α’ → dialogue (F (α i)) α ≡ dialogue (F (α’ i)) α’
lemma α α’ (branch r l) = trans fact0 fact1

where
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fact0 : dialogue (F (α i)) α ≡ dialogue (F (α’ i)) α
fact0 = cong (ń j → dialogue(F j) α) r
fact1 : dialogue (F (α’ i)) α ≡ dialogue (F (α’ i)) α’
fact1 = claim (α’ i) α α’ (l(α’ i))

UC-extensional : ∀(f g : Cantor → N) → (∀(α : Cantor) → f α ≡ g α)
→ uniformly-continuous f → uniformly-continuous g

UC-extensional f g t (u , c) = (u , (ń α α’ r → trans (sym (t α)) (trans (c α α’ r) (t α’))))

eloquent-is-UC : ∀(f : Cantor → N) → eloquent f → uniformly-continuous f
eloquent-is-UC f (d , e) = UC-extensional (dialogue d) f e (dialogue-UC d)

We finish this section by showing that the restriction of an eloquent function
f : Baire → N to the Cantor type is also eloquent. We first define a pruning
function from B N to C N that implements restriction:

embed-N2-N : N2 → N

embed-N2-N 0 = zero
embed-N2-N 1 = succ zero

embed-C-B : Cantor → Baire
embed-C-B α = embed-N2-N ◦ α

C-restriction : (Baire → N) → (Cantor → N)
C-restriction f = f ◦ embed-C-B

prune : B N → C N
prune (η n) = η n
prune (B F i) = B (ń j → prune(F(embed-N2-N j))) i

prune-behaviour : ∀(d : B N)(α : Cantor) → dialogue (prune d) α ≡ C-restriction(dialogue d) α
prune-behaviour (η n) α = refl
prune-behaviour (B F n) α = prune-behaviour (F(embed-N2-N(α n))) α

eloquent-restriction : ∀(f : Baire → N) → eloquent f → eloquent(C-restriction f)
eloquent-restriction f (d , c) = (prune d , ń α → trans (prune-behaviour d α) (c (embed-C-B α)))

2.3 Gödel’s system T extended with an oracle

For simplicity, we work with system T in its original combinatory form. This
is no loss of generality, because both the combinatory and the lambda-calculus
forms define the same elements of the set-theoretical model, and here we are
interested in the continuity of the definable functionals. The system T type
expressions and terms are inductively defined as follows:

data type : Set where
Ì : type
_⇒_ : type → type → type

data T : (σ : type) → Set where
Zero : T Ì
Succ : T(Ì ⇒ Ì)
Rec : ∀{σ : type} → T((σ ⇒ σ) ⇒ σ ⇒ Ì ⇒ σ)
K : ∀{σ τ : type} → T(σ ⇒ τ ⇒ σ)
S : ∀{ρ σ τ : type} → T((ρ ⇒ σ ⇒ τ) ⇒ (ρ ⇒ σ) ⇒ ρ ⇒ τ)
_·_ : ∀{σ τ : type} → T(σ ⇒ τ) → T σ → T τ
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infixr 1 _⇒_
infixl 1 _·_

Notice that there are five constants (or combinators) and one binary construc-
tor (application). Notice also that one can build only well-typed terms. The
set-theoretical interpretation of type expressions and terms is given by

SetJ_K : type → Set
SetJ Ì K = N
SetJ σ ⇒ τ K = SetJ σ K → SetJ τ K

J_K : ∀{σ : type} → T σ → SetJ σ K
J Zero K = zero
J Succ K = succ
J Rec K = rec
J K K = Ķ
J S K = Ş
J t · u K = J t K J u K

An element of the set-theoretical model is called T-definable if there is a T-
term denoting it:

T-definable : ∀{σ : type} → SetJ σ K → Set
T-definable x = Σ \t → J t K ≡ x

As discussed above, the main theorem, proved in the last subsection, is that
every T-definable function Baire → N is continuous. The system T type of
such functionals is (Ì ⇒ Ì) ⇒ Ì.

We also consider system T extended with a formal oracle Ω : Ì ⇒ Ì:

data TΩ : (σ : type) → Set where
Ω : TΩ(Ì ⇒ Ì)
Zero : TΩ Ì
Succ : TΩ(Ì ⇒ Ì)
Rec : ∀{σ : type} → TΩ((σ ⇒ σ) ⇒ σ ⇒ Ì ⇒ σ)
K : ∀{σ τ : type} → TΩ(σ ⇒ τ ⇒ σ)
S : ∀{ρ σ τ : type} → TΩ((ρ ⇒ σ ⇒ τ) ⇒ (ρ ⇒ σ) ⇒ ρ ⇒ τ)
_·_ : ∀{σ τ : type} → TΩ(σ ⇒ τ) → TΩ σ → TΩ τ

In the standard set-theoretical interpretation, the oracle can be thought of as
a free variable ranging over elements of the interpretation Baire of the type
expression Ì ⇒ Ì:

J_K’ : ∀{σ : type} → TΩ σ → Baire → SetJ σ K
J Ω K’ α = α
J Zero K’ α = zero
J Succ K’ α = succ
J Rec K’ α = rec
J K K’ α = Ķ
J S K’ α = Ş
J t · u K’ α = J t K’ α (J u K’ α)
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To regard TΩ as an extension of T we need to work with an embedding:

embed : ∀{σ : type} → T σ → TΩ σ
embed Zero = Zero
embed Succ = Succ
embed Rec = Rec
embed K = K
embed S = S
embed (t · u) = (embed t) · (embed u)

2.4 The dialogue interpretation of system T

We now consider an auxiliary interpretation of system T extended with an
oracle in order to show that the original T-definable functions Baire → N

are continuous. In the alternative semantics, types are interpreted as the
underlying objects of certain algebras of the dialogue monad. The ground
type is interpreted as the free algebra of the standard interpretation, and
function types as function sets. For the sake of brevity, we will include only
the parts of the definition of the monad that we actually need for our purposes.

kleisli-extension : ∀{X Y : Set} → (X → B Y) → B X → B Y
kleisli-extension f (η x) = f x
kleisli-extension f (B F i) = B (ń j → kleisli-extension f (F j)) i

B-functor : ∀{X Y : Set} → (X → Y) → B X → B Y
B-functor f = kleisli-extension(η ◦ f)

The following two lemmas are crucial. We first swap the two arguments of the
dialogue function to have the view that from an element of the Baire type we
get a B-algebra B X → X for any X:

decode : ∀{X : Set} → Baire → B X → X
decode α d = dialogue d α

The decodification map is natural for any oracle α : Baire:

B X
B g - B Y

X

decode α
?

g
- Y.

decode α
?

decode-α-is-natural : ∀{X Y : Set}(g : X → Y)(d : B X)(α : Baire) → g(decode α d) ≡ decode α (B-functor g d)
decode-α-is-natural g (η x) α = refl
decode-α-is-natural g (B F i) α = decode-α-is-natural g (F(α i)) α

The following diagram commutes for any f : X → B Y :

12
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B X
kleisli-extension f - B Y

X

decode α
?

f
- B Y

decode α
- Y.

decode α
?

decode-kleisli-extension : ∀{X Y : Set}(f : X → B Y)(d : B X)(α : Baire)
→ decode α (f(decode α d)) ≡ decode α (kleisli-extension f d)

decode-kleisli-extension f (η x) α = refl
decode-kleisli-extension f (B F i) α = decode-kleisli-extension f (F(α i)) α

System TΩ type expressions are interpreted as the underlying sets of certain
algebras of the dialogue monad. The base type is interpreted as the underlying
set of the free algebra of the standard interpretation, and function types are
interpreted as sets of functions, exploiting the fact that algebras are exponen-
tial ideals (if Y is the underlying object of an algebra, then so is the set of all
functions X → Y for any X, with the pointwise structure).

B-SetJ_K : type → Set
B-SetJ Ì K = B(SetJ Ì K)
B-SetJ σ ⇒ τ K = B-SetJ σ K → B-SetJ τ K

According to the official definition of an algebra of a monad, to show that a
set X is the underlying object of an algebra one must provide a structure map
B X → X. Alternatively, which is more convenient for us, one can provide a
generalized Kleisli extension operator, defined as follows, where the base case
is just Kleisli extension, and the induction step is pointwise extension:

Kleisli-extension : ∀{X : Set} {σ : type} → (X → B-SetJ σ K) → B X → B-SetJ σ K
Kleisli-extension {X} {Ì} = kleisli-extension
Kleisli-extension {X} {σ ⇒ τ} = ń g d s → Kleisli-extension {X} {τ} (ń x → g x s) d

With this we can now define the dialogue interpretation of system TΩ. The
generic element of the Baire type under this interpretation will interpret the
Baire oracle Ω:

generic : B N → B N
generic = kleisli-extension(B η)

As discussed in Section 1, the crucial property of the generic element is this:

B N
generic- B N

N

decode α
?

α
- N.

decode α
?

13



Escardo

generic-diagram : ∀(α : Baire)(d : B N) → α(decode α d) ≡ decode α (generic d)
generic-diagram α (η n) = refl
generic-diagram α (B F n) = generic-diagram α (F(α n))

The alternative interpretations of zero and successor are obvious:

zero’ : B N
zero’ = η zero
succ’ : B N → B N
succ’ = B-functor succ

And the interpretation of the primitive recursion combinator again uses Kleisli
extension in an obvious way:

rec’ : ∀{σ : type} → (B-SetJ σ K → B-SetJ σ K) → B-SetJ σ K → B N → B-SetJ σ K
rec’ f x = Kleisli-extension(rec f x)

This gives the dialogue interpretation. Notice that the interpretations of K, S
and application are standard. This is because we interpret function types as
sets of functions:

BJ_K : ∀{σ : type} → TΩ σ → B-SetJ σ K
BJ Ω K = generic
BJ Zero K = zero’
BJ Succ K = succ’
BJ Rec K = rec’
BJ K K = Ķ
BJ S K = Ş
BJ t · u K = BJ t K (BJ u K)

This semantics gives the desired dialogue trees:

dialogue-tree : T((Ì ⇒ Ì) ⇒ Ì) → B N
dialogue-tree t = BJ (embed t) · Ω K

The remainder of the development is the formulation and proof of the correct-
ness of the dialogue-tree function. We conclude this section with the trivial
proof that the embedding of T into TΩ preserves the standard interpretation
and furthermore is independent of oracles:

preservation : ∀{σ : type} → ∀(t : T σ) → ∀(α : Baire) → J t K ≡ J embed t K’ α
preservation Zero α = refl
preservation Succ α = refl
preservation Rec α = refl
preservation K α = refl
preservation S α = refl
preservation (t · u) α = cong2 (ń f x → f x) (preservation t α) (preservation u α)

2.5 Relating the two models

The main lemma is that for any term t : TΩ Ì,

14
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J t K′ α ≡ decode α (BJ t K).

We use the following logical relation to prove this:

R : ∀{σ : type} → (Baire → SetJ σ K) → B-SetJ σ K → Set

R {Ì} n n’ =
∀(α : Baire) → n α ≡ decode α n’

R {σ ⇒ τ} f f ’ =
∀(x : Baire → SetJ σ K)(x’ : B-SetJ σ K) → R {σ} x x’ → R {τ} (ń α → f α (x α)) (f ’ x’)

We need a (fairly general) technical lemma, which is used for constants with an
interpretation using the Kleisli-extension operator. In our case, this is just the
recursion combinator. The proof is by induction on type expressions, crucially
relying on the lemma decode-kleisli-extension, but is routine otherwise:

R-kleisli-lemma : ∀(σ : type)(g : N → Baire → SetJ σ K)(g’ : N → B-SetJ σ K)
→ (∀(k : N) → R (g k) (g’ k))
→ ∀(n : Baire → N)(n’ : B N) → R n n’ → R (ń α → g (n α) α) (Kleisli-extension g’ n’)

R-kleisli-lemma Ì g g’ rg n n’ rn = ń α → trans (fact3 α) (fact0 α)
where

fact0 : ∀ α → decode α (g’ (decode α n’)) ≡ decode α (kleisli-extension g’ n’)
fact0 = decode-kleisli-extension g’ n’
fact1 : ∀ α → g (n α) α ≡ decode α (g’(n α))
fact1 α = rg (n α) α
fact2 : ∀ α → decode α (g’ (n α)) ≡ decode α (g’ (decode α n’))
fact2 α = cong (ń k → decode α (g’ k)) (rn α)
fact3 : ∀ α → g (n α) α ≡ decode α (g’ (decode α n’))
fact3 α = trans (fact1 α) (fact2 α)

R-kleisli-lemma (σ ⇒ τ) g g’ rg n n’ rn
= ń y y’ ry → R-kleisli-lemma τ (ń k α → g k α (y α)) (ń k → g’ k y’) (ń k → rg k y y’ ry) n n’ rn

The proof of the main lemma is by induction on terms, crucially relying on
the lemmas generic-diagram (for the term Ω), decode-is-natural (for the term
Succ) and R-kleisli-lemma (for the term Rec). The terms K and S are routine
(but laborious and difficult to get right in an informal calculation), and so is
the induction step for application:

main-lemma : ∀{σ : type}(t : TΩ σ) → R J t K’ (BJ t K)

main-lemma Ω = lemma
where

claim : ∀ α n n’ → n α ≡ dialogue n’ α → α(n α) ≡ α(decode α n’)
claim α n n’ s = cong α s
lemma : ∀(n : Baire → N)(n’ : B N) → (∀ α → n α ≡ decode α n’)
→ ∀ α → α(n α) ≡ decode α (generic n’)

lemma n n’ rn α = trans (claim α n n’ (rn α)) (generic-diagram α n’)

main-lemma Zero = ń α → refl
main-lemma Succ = lemma

where
claim : ∀ α n n’ → n α ≡ dialogue n’ α → succ(n α) ≡ succ(decode α n’)
claim α n n’ s = cong succ s
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lemma : ∀(n : Baire → N)(n’ : B N) → (∀ α → n α ≡ decode α n’)
→ ∀ α → succ (n α) ≡ decode α (B-functor succ n’)

lemma n n’ rn α = trans (claim α n n’ (rn α)) (decode-α-is-natural succ n’ α)

main-lemma {(σ ⇒ .σ) ⇒ .σ ⇒ Ì ⇒ .σ} Rec = lemma
where

lemma : ∀(f : Baire → SetJ σ K → SetJ σ K)(f ’ : B-SetJ σ K → B-SetJ σ K) → R {σ ⇒ σ} f f ’
→ ∀(x : Baire → SetJ σ K)(x’ : B-SetJ σ K)
→ R {σ} x x’ → ∀(n : Baire → N)(n’ : B N) → R {Ì} n n’
→ R {σ} (ń α → rec (f α) (x α) (n α)) (Kleisli-extension(rec f ’ x’) n’)

lemma f f ’ rf x x’ rx = R-kleisli-lemma σ g g’ rg
where

g : N → Baire → SetJ σ K
g k α = rec (f α) (x α) k
g’ : N → B-SetJ σ K
g’ k = rec f ’ x’ k
rg : ∀(k : N) → R (g k) (g’ k)
rg zero = rx
rg (succ k) = rf (g k) (g’ k) (rg k)

main-lemma K = ń x x’ rx y y’ ry → rx

main-lemma S = ń f f ’ rf g g’ rg x x’ rx → rf x x’ rx (ń α → g α (x α)) (g’ x’) (rg x x’ rx)

main-lemma (t · u) = main-lemma t J u K’ BJ u K (main-lemma u)

This gives the correctness of the dialogue-tree function defined above: the
standard interpretation of a term is computed by its dialogue tree.

dialogue-tree-correct : ∀(t : T((Ì ⇒ Ì) ⇒ Ì))(α : Baire) → J t K α ≡ decode α (dialogue-tree t)
dialogue-tree-correct t α = trans claim0 claim1

where
claim0 : J t K α ≡ J (embed t) · Ω K’ α
claim0 = cong (ń g → g α) (preservation t α)
claim1 : J (embed t) · Ω K’ α ≡ decode α (dialogue-tree t)
claim1 = main-lemma ((embed t) · Ω) α

The desired result follows directly from this:

eloquence-theorem : ∀(f : Baire → N) → T-definable f → eloquent f
eloquence-theorem f (t , r) = (dialogue-tree t , ń α → trans(sym(dialogue-tree-correct t α))(cong(ń g → g α) r))

corollary0 : ∀(f : Baire → N) → T-definable f → continuous f
corollary0 f d = eloquent-is-continuous f (eloquence-theorem f d)

corollary1 : ∀(f : Baire → N) → T-definable f → uniformly-continuous(C-restriction f)
corollary1 f d = eloquent-is-UC (C-restriction f) (eloquent-restriction f (eloquence-theorem f d))

This concludes the full, self-contained, MLTT proof in Agda notation, given
from scratch. Because MLTT proofs are programs, we can run the two corol-
laries to compute moduli of (uniform) continuity of T-definable functions.
Because MLTT itself has an interpretation in ZF(C), in which types are sets
in the sense of classical mathematics, the results of this paper hold in classical
mathematics too. Because the LATEX source for this article [7] is simultane-
ously an Agda file that type-checks, the readers don’t need to check the routine
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details of the proofs themselves, provided they trust the minimal core of Agda
used here, and can instead concentrate on the interesting details of the con-
structions and proofs. One can envisage a future in which it will be easier to
write (constructive and non-constructive) formal proofs than informal, rigor-
ous proofs, letting our minds concentrate on the insights. This is certainly
a provocative statement. But, in fact, the proof presented here was directly
written in its formal form, without an informal draft other than a mental
picture starting from the idea of generic sequence as described in the intro-
duction, with some rudimentary help by Agda to perform the routine steps.
Tactic-based systems such as e.g. Coq provide much more help, which in some
instances can be considered as non-routine even if ultimately they are based
on algorithms. But our principal motivation for writing this formal proof in
an MLTT or realizability based computer system such as NuPrl, Coq, Lego,
Agda, Minlog etc. is that mentioned above, that the proof is literally a pro-
gram too, and hence can be used to compute moduli of (uniform) continuity,
without the need to write a separate algorithm based on an informal, rigorous
proof, as it is usually currently done, including by ourselves in previous work.

Having said that, it is useful to have a self-contained informal rigorous
proof, which we include in the next section. Before that, we conclude this sec-
tion by running our formal constructive proof for the purposes of illustration.

2.6 Experiments

To illustrate the concrete sense in which the above formal proof is constructive,
we develop some experiments. These experiments are not meant to indicate
the usefulness of the theorem proved above. They merely make clear that the
theorems do have a concrete computational content.

First of all, given a term t : (Ì ⇒ Ì) ⇒ Ì, we can compute its modulus of
(uniform) continuity.

mod-cont : T((Ì ⇒ Ì) ⇒ Ì) → Baire → List N
mod-cont t α = π0(corollary0 J t K (t , refl) α)
mod-cont-obs : ∀(t : T((Ì ⇒ Ì) ⇒ Ì))(α : Baire) → mod-cont t α ≡ π0(dialogue-continuity (dialogue-tree t) α)
mod-cont-obs t α = refl

infixl 0 _::_
infixl 1 _++_
_++_ : {X : Set} → List X → List X → List X
[] ++ u = u
(x :: t) ++ u = x :: t ++ u
flatten : {X : Set} → Tree X → List X
flatten empty = []
flatten (branch x t) = x :: flatten(t 0) ++ flatten(t 1)

mod-unif : T((Ì ⇒ Ì) ⇒ Ì) → List N
mod-unif t = flatten(π0 (corollary1 J t K (t , refl)))

The following Agda declaration allows us to write e.g. 3 rather than
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succ(succ(succ zero)):

{-# BUILTIN NATURAL N #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC succ #-}

A difficulty we face is that it is not easy to write system T programs in
the combinatory version of system T. Hence we start by developing some
machinery.

I : ∀{σ : type} → T(σ ⇒ σ)
I {σ} = S · K · (K {σ} {σ})
I-behaviour : ∀{σ : type}{x : SetJ σ K} → J I K x ≡ x
I-behaviour = refl

number : N → T Ì
number zero = Zero
number (succ n) = Succ · (number n)

Here is our first example:

t0 : T((Ì ⇒ Ì) ⇒ Ì)
t0 = K · (number 17)
t0-interpretation : J t0 K ≡ ń α → 17
t0-interpretation = refl
example0 example0’ : List N
example0 = mod-cont t0 (ń i → i)
example0’ = mod-unif t0

These examples both evaluate to []. To provide more sophisticated examples,
we work with an impoverished context G that allows us to consider just one
free variable v, which is represented by the I combinator:

v : ∀{G : type} → T(G ⇒ G)
v = I

Application for such a context amounts to the S combinator:

infixl 1 _•_
_•_ : ∀{G σ τ : type} → T(G ⇒ σ ⇒ τ) → T(G ⇒ σ) → T(G ⇒ τ)
f • x = S · f · x

Number : ∀{G} → N → T(G ⇒ Ì)
Number n = K · (number n)

Here is an example:

t1 : T((Ì ⇒ Ì) ⇒ Ì)
t1 = v • (Number 17)
t1-interpretation : J t1 K ≡ ń α → α 17
t1-interpretation = refl
example1 : List N
example1 = mod-unif t1

This evaluates to 17 :: [].
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t2 : T((Ì ⇒ Ì) ⇒ Ì)
t2 = Rec • t1 • t1
t2-interpretation : J t2 K ≡ ń α → rec α (α 17) (α 17)
t2-interpretation = refl
example2 example2’ : List N
example2 = mod-unif t2
example2’ = mod-cont t2 (ń i → i)

These examples evaluate to 17 :: 17 :: 17 :: 0 :: 1 :: [] and to a list whose
members are all 17.

Add : T(Ì ⇒ Ì ⇒ Ì)
Add = Rec · Succ
infixl 0 _+_
_+_ : ∀{G} → T(G ⇒ Ì) → T(G ⇒ Ì) → T(G ⇒ Ì)
x + y = K · Add • x • y

t3 : T((Ì ⇒ Ì) ⇒ Ì)
t3 = Rec • (v • Number 1) • (v • Number 2 + v • Number 3)
t3-interpretation : J t3 K ≡ ń α → rec α (α 1) (rec succ (α 2) (α 3))
t3-interpretation = refl
example3 example3’ : List N
example3 = mod-cont t3 succ
example3’ = mod-unif t3

These examples evaluate to 3 :: 2 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: [] and 3
:: 2 :: 1 :: 1 :: 0 :: 1 :: 2 :: 1 :: 0 :: 1 :: 1 :: 0 :: 0 :: 1 :: 1 :: 0 :: 1 :: [].

length : {X : Set} → List X → N

length [] = 0
length (x :: s) = succ(length s)
max : N → N → N

max 0 x = x
max x 0 = x
max (succ x) (succ y) = succ(max x y)
Max : List N → N

Max [] = 0
Max (x :: s) = max x (Max s)

t4 : T((Ì ⇒ Ì) ⇒ Ì)
t4 = Rec • ((v • (v • Number 2)) + (v • Number 3)) • t3
t4-interpretation : J t4 K ≡ ń α → rec α (rec succ (α (α 2)) (α 3)) (rec α (α 1) (rec succ (α 2) (α 3)))
t4-interpretation = refl
example4 example4’ : N
example4 = length(mod-unif t4)
example4’ = Max(mod-unif t4)

These examples evaluate to 215 and 3.

t5 : T((Ì ⇒ Ì) ⇒ Ì)
t5 = Rec • (v • (v • t2 + t4)) • (v • Number 2)
t5-explicitly : t5 ≡ (S · (S · Rec · (S · I · (S · (S · (K · (Rec · Succ)) · (S · I · (S · (S · Rec ·

(S · I · (K · (number 17))))· (S · I · (K · (number 17)))))) · (S · (S · Rec ·
(S · (S · (K · (Rec · Succ)) · (S · I · (S · I · (K · (number 2))))) · (S · I ·
(K · (number 3))))) · (S · (S · Rec · (S · I · (K · (number 1)))) · (S · (S ·
(K · (Rec · Succ)) · (S · I · (K · (number 2)))) · (S · I · (K · (number 3))))))))) ·
(S · I · (K · (number 2))))

t5-explicitly = refl
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t5-interpretation : J t5 K ≡ ń α → rec α (α(rec succ (α(rec α (α 17) (α 17))) (rec α (rec succ (α (α 2)) (α 3))
(rec α (α 1) (rec succ (α 2) (α 3)))))) (α 2)

t5-interpretation = refl
example5 example5’ example5” : N
example5 = length(mod-unif t5)
example5’ = Max(mod-unif t5)
example5” = Max(mod-cont t5 succ)

These examples evaluate to 15551, 17 and 57. All evaluations reported above
are instantaneous, except this last set, which takes about a minute in a low-end
netbook. The use of Church encoding of dialogue trees produces a dramatic
performance improvement [7], with an instantaneous answer in these examples,
because Klesli extension and the functor don’t need to walk through trees to
be performed.

3 Informal, rigorous proof

We now provide a self-contained, informal, rigorous version of the formal proof
given above, in a foundationally neutral exposition.

We work with the combinatory version of (the term language of) Gödel’s
system T. We have a ground type ι and a right-associative type formation
operation − ⇒ −. Every term as a unique type. We have the constants

(i) Zero : ι.
(ii) Succ : ι⇒ ι.
(iii) Recσ : (σ ⇒ σ)⇒ σ ⇒ ι⇒ σ.
(iv) Kσ,τ : σ ⇒ τ ⇒ σ.
(v) Sρ,σ,τ : (ρ⇒ σ ⇒ τ)⇒ (ρ⇒ σ)⇒ ρ⇒ τ .

We omit the subscripts when they can be uniquely inferred from the context.
If t : σ ⇒ τ and u : τ are terms, then so is tu : τ , with the convention that
this application operation is left associative. Write Tσ for the set of terms of
type σ.

In the standard interpretation, we map a type expression σ to a set JσK
and a term t : σ to an element JtK ∈ JσK. These interpretations are defined by
induction as follows:

JιK = N, Jσ ⇒ τK = JτKJσK = (JσK→ JτK) (set of all functions JσK→ JτK),

JZeroK = 0, JSuccKn = n+ 1, JRecKfxn = fn(x),

JKKxy = x, JSKfgx = fx(gx), JtuK = JtK(JuK).

For any given three sets X, Y, Z, the set DXY Z of dialogue trees is inductively
defined as follows:

(i) A leaf labeled by an element z ∈ Z is a dialogue tree, written ηz.
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(ii) If φ : Y → DXY Z is a Y -indexed family of dialogue trees and x ∈ X,
then the tree with root labeled by x and with one branch leading to the
subtree φy for each y ∈ Y is also a dialogue tree, written βφx.

Such trees are well founded, meaning that every path from the root to a leaf
is finite. The above notation gives functions

η : Z → DXY Z,

β : (Y → DXY Z)→ X → DXY Z.

Dialogue trees describe “computations” of functions f : Y X → Z. Leaves give
answers, and labels of internal nodes are queries to an “oracle” α ∈ Y X , the
argument of the function f . For any dialogue tree d ∈ DXY Z, we inductively
define a function fd : Y X → Z by

fηz(α) = z, fβφx(α) = fφ(αx)(α).

The functions Y X → Z that arise in this way are called eloquent. Notice that
the oracle α is queried finitely many times in this computation, because a
dialogue tree is well founded. Hence the function f = fd : Y X → Z satisfies

∀α ∈ Y X ∃finite S ⊆ X ∀α′ ∈ Y X , α =S α
′ =⇒ fα = fα′,

where α =S α
′ is a shorthand for ∀x ∈ S, αx = α′x. When X = Y = Z = N,

this amounts to continuity in the product topology of NN with N discrete,
which gives the Baire space.

For Y finite and X,Z arbitrary, the dialogue tree is finitely branching and
hence finite by well-foundedness (or directly by induction), and so the set of
potential queries to the oracle is finite, so that, for any f = fd : Y X → Z
with Y finite,

∃finite S ⊆ X ∀α, α′ ∈ Y X , α =S α
′ =⇒ fα = fα′.

When Y = 2 = {0, 1} and X = Z = N, this amounts to (uniform) continuity
in the product topology of 2N with 2 discrete, which gives the Cantor space.

Clearly, any N-branching tree d ∈ DNNN can be pruned to a 2-branching
tree d′ ∈ DN2N so that fd′ : 2N → N is the restriction of fd : NN → N
from sequences to binary sequences. Hence if we show that every T-definable
function NN → N is eloquent, we conclude that every T-definable function
NN → N is continuous and its restriction to 2N is uniformly continuous. For
this purpose, we consider an auxiliary model of system T.

Define BX = DNNX. We remark that although B is the object part of a
monad, as discussed in the introduction, it is not necessary to know this for
the purposes of this proof. The data given below do obey the required laws
to get a monad, but the details are left to the interested reader.
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For any function f : X → BY , inductively define f ] : BX → BY by

f ](ηx) = fx,

f ](βφi) = β(λj.f ](φj))i.

This says that the tree f ](d) is d with each leaf labeled by x replaced by the
subtree fx, with no changes to the internal nodes. Given f : X → Y , we
define f : BX → BY by

B f = (η ◦ f)].

Hence B f(d) replaces each label x of a leaf of d by the label f(x), and we
have the naturality condition

BX
B f
- BY

X

η
6

f
- Y.

η
6

For each α ∈ NN and any set X, define a map decodeα : BX → X by

decodeα(d) = fd(α).

Then, by definition, decodeα(ηx) = x, and hence the naturality of η gives that
of decodeα:

BX
B f

- BY

X

decodeα
?

f
- Y.

decodeα
?

(1)

It is also easy to see, by induction on dialogue trees, that

BX
f ]

- BY

X

decodeα
?

f
- BY

decodeα
- Y.

decodeα
?

(2)

Now define

generic : BN→ BN
generic = (βη)].
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Because β : (N → BN) → N → BN and η : N → BN, the function generic is
well defined. Its crucial property is that

BN
generic

- BN

N

decodeα
?

α
- N.

decodeα
?

(3)

The proof that
decodeα(generic d) = α(decodeα d)

is straightforward by induction on d.
Now define the B-interpretation of types as follows:

BJιK = B(JιK) = BN, BJσ ⇒ τK = BJτKBJσK.

For any type σ and f : X → BJσK, define f ] : BX → BJσK by induction on σ,
where the base case σ = ι is given by the above definition, and the induction
step σ = (ρ⇒ τ) is given pointwise as

f ]dy = (λx.fxy)]d.

Notice that f : X → BJρK→ BJτK and f ] : BX → BJρK→ BJτK.
Next extend system T with a new constant Ω: ι⇒ ι, a formal oracle, and

define the B-interpretation of terms as follows:

BJΩK = generic, BJZeroK = η0, BJSuccK = B(λn.n+ 1), BJRecKfx = (λn.fn(x))],

BJKKxy = x, BJSKfgx = fx(gx), BJtuK = BJtK(BJuK).

We also need to consider the standard interpretation of system T extended
with the oracle Ω. We treat the oracle as a free variable, as hence the value
of this free variable has to be provided to define the interpretation:

JΩKα = α, JZeroKα = 0, JSuccKαn = n+ 1, JRecKαfxn = fn(x),

JKKαxy = x, JSKαfgx = fx(gx), JtuKα = JtKα(JuKα).

We claim that for any term t : ι,

JtKα = decodeα(BJtK).

To prove this, we work with a logical relation Rσ between functions NN → JσK
and elements of BJσK by induction on σ. For any n : NN → N and n′ ∈ BN,
we define

Rιnn
′ ⇐⇒ ∀α, nα = decodeα n

′,
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and, for any f : NN → JσK→ JτK and f ′ : BJσK→ BJτK, we define

Rσ→τff
′ ⇐⇒ ∀x : NN → JσK, ∀x′ : BJσK, Rσxx

′ → Rτ (λα, fα(xα))(f ′x′).

We need a technical lemma for dealing with the dialogue interpretation of Rec:

Claim 3.1 For all g : N→ NN → BJσK and g′ : N→ BJσK, if

∀k ∈ N, Rσ(gk)(g′k),

then ∀n : NN → N, ∀n′ ∈ BN, Rιnn
′ → Rσ(λα→ g(nα)α)(g′n′)].

The proof is straightforward by induction on types, using diagram 2.

Claim 3.2 Rσ JtK (BJtK) for every term t : σ.

The proof is by induction on terms, using diagram 3 for the term Ω, diagram 1
for the term Succ, and Claim 3.1 for the term Rec. The terms K and S

are immediate but perhaps laborious, and the induction step, namely term
application, is easy. This gives, in particular:

Claim 3.3 For every term t : (ι⇒ ι)⇒ ι, we have JtKα = decodeα(BJtΩK).

It follows that every T-definable function f : NN → N is eloquent, with dia-
logue tree given by BJtΩK, where t : (ι ⇒ ι) ⇒ ι is any term denoting f , and
hence continuous, with uniformly continuous restriction to 2N.

4 Discussion, questions and conjectures

It may not be apparent from the informal proof of Section 3 that the ar-
gument is constructive, but Section 2 provides a constructive rendering in
Martin-Löf type theory. We emphasize that our proof doesn’t invoke the Fan
Theorem [15,2] or any constructively contentious axiom.

We have deliberately chosen system T in its combinatory form as the sim-
plest and most memorable non-trivial higher-type language to illustrate the
essence of the technique proposed here. It is clearly routine (as well as interest-
ing and useful) to apply the technique to a number of well-known extensions
of the simply-typed lambda-calculus. But, for instance, at the time of writing,
dependent types seem to require further thought, particularly in the presence
of universes. Can one, e.g. (generalize and) apply the technique developed
here to show that all MLTT definable functions (N → N) → N are continu-
ous, and that their restrictions to (N → 2) are uniformly continuous, in the
main versions of (intensional) MLTT? More ambitiously, does the technique
apply to Homotopy Type Theory [14]?

As pointed out by one of the anonymous referees, the syntactical techniques
of [15] give more information: for any term t of type (ι ⇒ ι) ⇒ ι one can
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construct a term m : (ι ⇒ ι) ⇒ ι such that m internalizes the modulus of
continuity of t. We adapted our technique to achieve this, as reported in [7],
by working with Church encodings of dialogue trees defined within system T,
and turning our semantical interpretation into a compositional translation of
system T into itself. A corollary is that the dialogue trees of T-definable
functions (N → N) → N, being themselves T-definable, have height smaller
than ε0.
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