Tom de Jong, 28 February 2022
We show that the type Ω 𝓤 of propositions in a universe 𝓤 form an algebraic
pointed 𝓤-dcpo.
In fact, we show that the Booleans give a small compact basis for Ω 𝓤 and
characterize the compact elements of Ω 𝓤 as the decidable propositions.
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import MLTT.Spartan
open import UF.FunExt
open import UF.PropTrunc
open import UF.Subsingletons
module DomainTheory.Examples.Omega
(pt : propositional-truncations-exist)
(fe : Fun-Ext)
(pe : Prop-Ext)
(𝓤 : Universe)
where
open PropositionalTruncation pt
open import MLTT.Plus-Properties
open import UF.Equiv
open import UF.ImageAndSurjection pt
open import UF.Subsingletons-FunExt
open import UF.SubtypeClassifier renaming (⊥ to ⊥Ω ; ⊤ to ⊤Ω)
open import UF.SubtypeClassifier-Properties
open import DomainTheory.Basics.Dcpo pt fe 𝓤
open import DomainTheory.Basics.Pointed pt fe 𝓤
open import DomainTheory.Basics.WayBelow pt fe 𝓤
open import DomainTheory.BasesAndContinuity.Bases pt fe 𝓤
open import DomainTheory.BasesAndContinuity.Continuity pt fe 𝓤
_⊑_ : Ω 𝓤 → Ω 𝓤 → 𝓤 ̇
P ⊑ Q = P holds → Q holds
⊑-is-reflexive : (P : Ω 𝓤) → P ⊑ P
⊑-is-reflexive _ = id
⊑-is-prop-valued : (P Q : Ω 𝓤) → is-prop (P ⊑ Q)
⊑-is-prop-valued P Q = Π-is-prop fe (λ _ → holds-is-prop Q)
⊑-is-transitive : (P Q R : Ω 𝓤) → P ⊑ Q → Q ⊑ R → P ⊑ R
⊑-is-transitive P Q R f g p = g (f p)
⊑-is-antisymmetric : (P Q : Ω 𝓤) → P ⊑ Q → Q ⊑ P → P = Q
⊑-is-antisymmetric P Q f g =
to-subtype-= (λ _ → being-prop-is-prop fe)
(pe (holds-is-prop P) (holds-is-prop Q) f g)
Ω-DCPO : DCPO {𝓤 ⁺} {𝓤}
Ω-DCPO = (Ω 𝓤 , _⊑_
, (Ω-is-set fe pe
, ⊑-is-prop-valued
, ⊑-is-reflexive
, ⊑-is-transitive
, ⊑-is-antisymmetric)
, γ)
where
γ : is-directed-complete _⊑_
γ I α δ = (sup , ub , lb-of-ubs)
where
sup : Ω 𝓤
sup = ((∃ i ꞉ I , α i holds) , ∃-is-prop)
ub : is-upperbound _⊑_ sup α
ub i p = ∣ i , p ∣
lb-of-ubs : is-lowerbound-of-upperbounds _⊑_ sup α
lb-of-ubs Q Q-is-ub = ∥∥-rec (holds-is-prop Q) h
where
h : (Σ i ꞉ I , α i holds) → Q holds
h (i , p) = Q-is-ub i p
Ω-DCPO⊥ : DCPO⊥ {𝓤 ⁺} {𝓤}
Ω-DCPO⊥ = Ω-DCPO , ((𝟘 , 𝟘-is-prop) , (λ _ → 𝟘-elim))
\end{code}
We proceed by showing that the Booleans give a small compact basis for Ω 𝓤.
\begin{code}
⊤Ω-is-greatest : (P : Ω 𝓤) → P ⊑ ⊤Ω
⊤Ω-is-greatest P _ = ⋆
Bool : 𝓤 ̇
Bool = 𝟙{𝓤} + 𝟙{𝓤}
κ : Bool → Ω 𝓤
κ (inl _) = ⊥Ω
κ (inr _) = ⊤Ω
κ⁺ : (P : Ω 𝓤) → (Σ b ꞉ Bool , κ b ⊑ P) → Ω 𝓤
κ⁺ P = κ ∘ pr₁
κ⁺-is-directed : (P : Ω 𝓤) → is-Directed Ω-DCPO (κ⁺ P)
κ⁺-is-directed P = inh , semidir
where
inh : ∥ domain (κ⁺ P) ∥
inh = ∣ inl ⋆ , ⊥-is-least Ω-DCPO⊥ P ∣
semidir : is-semidirected _⊑_ (κ⁺ P)
semidir (inl ⋆ , _) i = ∣ i , ⊥-is-least Ω-DCPO⊥ (κ⁺ P i)
, ⊑-is-reflexive (κ⁺ P i) ∣
semidir (inr ⋆ , u) j = ∣ (inr ⋆ , u) , ⊑-is-reflexive ⊤Ω
, ⊤Ω-is-greatest (κ⁺ P j) ∣
κ⁺-sup : (P : Ω 𝓤) → is-sup _⊑_ P (κ⁺ P)
κ⁺-sup P = ub , lb-of-ubs
where
ub : is-upperbound _⊑_ P (κ⁺ P)
ub (i , u) = u
lb-of-ubs : is-lowerbound-of-upperbounds _⊑_ P (κ⁺ P)
lb-of-ubs Q Q-is-ub p = Q-is-ub (inr ⋆ , (λ _ → p)) ⋆
𝟙-is-compact : is-compact Ω-DCPO ⊤Ω
𝟙-is-compact I α δ ⊤Ω-below-∐α = ∥∥-functor γ (⊤Ω-below-∐α ⋆)
where
γ : (Σ i ꞉ I , α i holds) → (Σ i ꞉ I , ⊤Ω ⊑ α i)
γ (i , p) = (i , (λ _ → p))
compact-if-in-image-of-κ : (P : Ω 𝓤) → P ∈image κ → is-compact Ω-DCPO P
compact-if-in-image-of-κ P P-in-image-of-κ =
∥∥-rec (being-compact-is-prop Ω-DCPO P) γ P-in-image-of-κ
where
γ : (Σ b ꞉ Bool , κ b = P) → is-compact Ω-DCPO P
γ (inl ⋆ , refl) = ⊥-is-compact Ω-DCPO⊥
γ (inr ⋆ , refl) = 𝟙-is-compact
in-image-of-κ-if-compact : (P : Ω 𝓤) → is-compact Ω-DCPO P → P ∈image κ
in-image-of-κ-if-compact P P-cpt = ∥∥-functor goal claim
where
I : 𝓤 ̇
I = 𝟙{𝓤} + (P holds)
α : I → Ω 𝓤
α = add-⊥ Ω-DCPO⊥ (λ _ → ⊤Ω)
δ : is-Directed Ω-DCPO α
δ = add-⊥-is-directed Ω-DCPO⊥
(subsingleton-indexed-is-semidirected Ω-DCPO (λ _ → ⊤Ω) (holds-is-prop P))
P-below-∐α : P ⊑ ∐ Ω-DCPO {I} {α} δ
P-below-∐α p = ∣ inr p , ⋆ ∣
claim : ∃ i ꞉ I , P ⊑ α i
claim = P-cpt I α δ P-below-∐α
goal : (Σ i ꞉ I , P ⊑ α i) → Σ b ꞉ Bool , κ b = P
goal (inl ⋆ , u) = (inl ⋆ , ⊑-is-antisymmetric ⊥Ω P
(⊥-is-least Ω-DCPO⊥ P) u)
goal (inr p , u) = (inr ⋆ , ⊑-is-antisymmetric ⊤Ω P (λ _ → p) u)
κ-is-small-compact-basis : is-small-compact-basis Ω-DCPO κ
κ-is-small-compact-basis =
record
{ basis-is-compact = λ b → compact-if-in-image-of-κ (κ b) ∣ b , refl ∣
; ⊑ᴮ-is-small = λ P b → (κ b ⊑ P , ≃-refl (κ b ⊑ P))
; ↓ᴮ-is-directed = κ⁺-is-directed
; ↓ᴮ-is-sup = κ⁺-sup
}
Ω-has-specified-small-compact-basis : has-specified-small-compact-basis Ω-DCPO
Ω-has-specified-small-compact-basis = (Bool , κ , κ-is-small-compact-basis)
\end{code}
Hence, Ω 𝓤 is algebraic.
\begin{code}
Ω-structurally-algebraic : structurally-algebraic Ω-DCPO
Ω-structurally-algebraic =
structurally-algebraic-if-specified-small-compact-basis Ω-DCPO
Ω-has-specified-small-compact-basis
Ω-is-algebraic-dcpo : is-algebraic-dcpo Ω-DCPO
Ω-is-algebraic-dcpo = ∣ Ω-structurally-algebraic ∣
\end{code}
Finally, we show that the compact elements of Ω 𝓤 are exactly the decidable
propositions.
\begin{code}
compact-iff-empty-or-unit : (P : Ω 𝓤)
→ is-compact Ω-DCPO P ↔ (P = ⊥Ω) + (P = ⊤Ω)
compact-iff-empty-or-unit P = I , II
where
I : is-compact Ω-DCPO P → (P = ⊥Ω) + (P = ⊤Ω)
I c = ∥∥-rec (+-is-prop (Ω-is-set fe pe) (Ω-is-set fe pe) I₁)
I₂
(in-image-of-κ-if-compact P c)
where
I₁ : P = ⊥Ω → ¬ (P = ⊤Ω)
I₁ refl e = 𝟘-is-not-𝟙 (ap (_holds) e)
I₂ : (Σ b ꞉ domain κ , κ b = P) → (P = ⊥Ω) + (P = ⊤Ω)
I₂ (inl ⋆ , refl) = inl refl
I₂ (inr ⋆ , refl) = inr refl
II : (P = ⊥Ω) + (P = ⊤Ω) → is-compact Ω-DCPO P
II (inl refl) = ⊥-is-compact Ω-DCPO⊥
II (inr refl) = 𝟙-is-compact
compact-iff-decidable : (P : Ω 𝓤) → is-compact Ω-DCPO P ↔ is-decidable (P holds)
compact-iff-decidable P = I , II
where
I : is-compact Ω-DCPO P → is-decidable (P holds)
I c = h (lr-implication (compact-iff-empty-or-unit P) c)
where
h : (P = ⊥Ω) + (P = ⊤Ω) → is-decidable (P holds)
h (inl refl) = inr 𝟘-elim
h (inr refl) = inl ⋆
II : is-decidable (P holds) → is-compact Ω-DCPO P
II d = rl-implication (compact-iff-empty-or-unit P)
(h (decidable-truth-values-are-⊥-or-⊤' pe fe P d))
where
h : (P = ⊤Ω) + (P = ⊥Ω) → (P = ⊥Ω) + (P = ⊤Ω)
h (inl x) = inr x
h (inr x) = inl x
\end{code}
Added 8 July 2024.
We can use the above to give an explicit counterexample to the claim that a
structural continuity of a dcpo expresses a property.
The idea is simply that if α : I → 𝓓 approximates an element x of a dcpo 𝓓, then
so does [α,α] : I + I → 𝓓, but the index types of these families are not equal
in general. Indeed they fail to be equal for the approximating family of ⊥Ω that
we constructed above.
\begin{code}
structural-continuity-is-not-prop : ¬ is-prop (structurally-continuous Ω-DCPO)
structural-continuity-is-not-prop ν =
I+I-is-not-prop (equiv-to-prop (≃-sym equivalent-index-types) I-is-prop)
where
open structurally-continuous
open is-small-compact-basis κ-is-small-compact-basis
s₁ : structurally-continuous Ω-DCPO
s₁ = structurally-continuous-if-structurally-algebraic
Ω-DCPO
Ω-structurally-algebraic
I = index-of-approximating-family s₁ ⊥Ω
i₀ : I
i₀ = inl ⋆ , 𝟘-elim
I-is-prop : is-prop I
I-is-prop (inl ⋆ , _) (inl ⋆ , _) =
to-subtype-= (λ b → ⊑ᴮₛ-is-prop-valued {b} {⊥Ω})
refl
I-is-prop (inl ⋆ , _) (inr ⋆ , b) = 𝟘-elim (b ⋆)
I-is-prop (inr ⋆ , b) _ = 𝟘-elim (b ⋆)
s₂ : structurally-continuous Ω-DCPO
s₂ = structurally-continuous-+-construction Ω-DCPO s₁
equivalent-index-types : I ≃ I + I
equivalent-index-types = idtoeq I (I + I)
(ap (λ - → index-of-approximating-family - ⊥Ω)
(ν s₁ s₂))
I+I-is-not-prop : ¬ is-prop (I + I)
I+I-is-not-prop ρ = +disjoint (ρ (inl i₀) (inr i₀))
\end{code}