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This note is an informal proof in MLTT (intensional Martin-Löf type the-
ory), with a conclusion about MLTT, of material developed formally in Agda
notation in the references given below. For more discussion of the notions,
see Generalizations of Hedberg’s Theorem, to appear in TLCA’2013, by Kraus,
Escardó, Coquand, and Altenkirch, but we try to be self contained.

1 Introduction

A type is called collapsible if it has a constant endomap, where a map is called
constant if any two of its values are equal. Hence any empty or inhabited type
is collapsible, and all types are collapsible under excluded middle.

We give an explicit counter-example to collapsibility. Given a type X and
a0, a1 : X, the type

(a0 = x) + (a1 = x)

can’t be collapsible for all x : X, unless a0 = a1 is decidable. Because there
are types that don’t provably have decidable equality, the above family can’t be
provably collapsible in general.

We formulate this positively, and in type theory, as saying that if the above
type is collapsible for all x : X then a0 = a1 is decidable. This can be seen
as a technique for proving the decidable equality of two given elements, but at
present it is hard to imagine a situation where this technique would be profitably
applicable.

It is an open problem to produce a single type (in a context) that can’t be
proved to be collapsible. This is related to the main open problem discussed in
the TLCA paper.

2 Our version of MLTT and notation

We work in basic intensional MLTT. We don’t need a universe of types. We
need at least

∏
and

∑
types, identity types, and a type 2 of binary numbers 0

and 1. Given a type X and elements x, y : X, we write x = y for the identity
type IdXxy, leaving X implicit.
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We don’t use HoTT (homotopy type theory) axioms, but we do use some
HoTT notions and techniques. In particular, we work with the notion of hpropo-
sition (type such that any two of its elements are equal), and hpropositional
truncation. It is an open problem whether such truncations are definable in
MLTT, but they are under the assumption of collapsibility. Recall that an hset
is a type such that x = y is an hproposition for any two of its elements x and y.

3 Kraus Lemma and hpropositional truncation

Kraus Lemma says that if κ : X → X is constant, then the type

fixκ :=
∑
x:X

x = κx

of fixed points of κ is an hproposition. See the TLCA paper or the Agda files
for the proof. This is clear if X is an hset, and this particular case is enough
for our counter-example, but it is interesting that the hset assumption is not
needed, and we get a sharper result without this assumption. The surprising,
and difficult, aspect of Klaus Lemma is that X is not assumed to be an hset.

We of course define

constantκ :=
∏

x,y:X

κx = κy.

From any p : constantκ, we get maps

| − | : X → fixκ

x 7→ (κx, px(κx))

fixκ → X,

(x,−) 7→ x.

This means that X is logically equivalent to the hproposition fixκ (and fixκ is
a retract of X). In general, if X ′ is an hproposition logically equivalent to X,
then X → X ′, and if X → P for any hproposition P , then X ′ → P . That
is, X → X ′ is the universal solution to the problem of mapping X into an
hproposition. Hence if X is collapsed by κ and p as above, we can define its
hpropositional truncation (or reflection) as

‖X‖ := fixκ.

We will write

∃x:X , Ax :=

∥∥∥∥∥∑
x:X

Ax

∥∥∥∥∥
when the type

∑
x:X Ax is collapsible.
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4 The counter-example

Let X be any type and a0, a1 : X be arbitrary. We show that if the type

(a0 = x) + (a1 = x)

is collapsible for all x : X, then a0 = a1 is decidable. For (technical and
conceptual) convenience in the proof, we regard the two elements as a single
map

a : 2→ X,

and we represent the displayed type as∑
i:2

ai = x.

The image of the map a : 2→ X is

E :=
∑
x:X

∃i:2, ai = x.

The existential quantifier exists by the assumption that the type
∑

i:2, ai = x is
collapsible, as discussed in the previous section. We have a map of the type 2
into the image E of the function a : 2→ X, defined, as usual, by

r : 2 → E

i 7→ (ai, |i, refl |).

Thanks to the use of hpropositional truncation,

ri = rj ⇐⇒ ai = aj .

If we define i ∼ j to mean ai = aj , the type E is the quotient of 2 by this
equivalence relation (images are quotients).

The assumption of collapsibility strengthens the quotient to a retract. In
fact, by the previous section, the collapsibility of the type

∑
i:2 ai = x gives

(∃i:2, ai = x)→
∑
i:2

ai = x.

This looks like a choice function, but is simply projection in our situation. The
choice has already been performed by the assumption of collapsibility. Using
this, we get a map

s : E → 2,

because there is a map (
∑

x:X

∑
i:2, ai = x) → 2 given by projection. Again

crucially relying on the use of hpropositional truncation, clearly

r(se) = e.

Putting this together, we have ai = aj ⇐⇒ s(ri) = s(rj) and, in particular,

a0 = a1 ⇐⇒ s(r0) = s(r1).

But the equality in the right-hand side is on the type 2, which is decidable.
Therefore a0 = a1 is decidable.
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5 References

1. Generalizations of Hedberg’s Theorem, to appear in TLCA’2013, by Kraus,
Escardó, Coquand, Altenkirch.

http://www.cs.bham.ac.uk/~mhe/papers/hedberg.pdf

2. http://www.cs.bham.ac.uk/~mhe/GeneralizedHedberg/html/GeneralizedHedberg.

html

The proofs of that paper and more.

3. http://www.cs.bham.ac.uk/~mhe/GeneralizedHedberg/non-collapsible-type/

non-collapsible-type.html

The proof presented here.

4. http://www.cs.bham.ac.uk/~mhe/GeneralizedHedberg/GlobalChoice/

GlobalChoice.html

A different presentation of the same result, which emphasizes that the
collapsibility of all types can be seen as a global-choice principle.

5. http://www.cs.bham.ac.uk/~mhe/GeneralizedHedberg/ConstantChoice/

ConstantChoice.html

This last file shows that if every type has a constant endomap, then every
relation has a functional subrelation with the same domain.
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