
What Sequential Games, the Tychonoff Theorem
and the Double-Negation Shift have in Common

Mart́ın Escardó
University of Birmingham, UK

Joint work with Paulo Oliva, Queen Mary, London, UK.

MSFP 2010, Baltimore, 25th September 2010

Abstract

I will discuss a higher-type functional, written here in Haskell, which

(1) calculates optimal strategies for sequential games,

(2) implements a computational version of the Tychonoff Theorem
from topology,

(3) realizes the Double-Negation Shift from logic and proof theory.

1

Abstract

This functional makes sense for both finite and infinite lists.

The binary case amounts to an operation that is available in any monad,
specialized to a certain selection monad.

Once this monad is defined, this functional turns out to be already available in
the Haskell Standard Prelude, called sequence

2

An amazingly versatile functional

bigotimes :: [(x -> r) -> x] -> ([x] -> r) -> [x]
bigotimes [] p = []
bigotimes (e : es) p = x0 : bigotimes es (p.(x0:))
where x0 = e(\x -> p(x : bigotimes es (p.(x:))))

1. r is a type of generalized truth values.

2. (x→ r)→ x is a type of selection functions.

3. The input is a list of selection functions for x.

4. The output is a single, combined selection function for [x].

3

Products of selection functions

If the input list of selection functions is

ε = [ε0, ε1, . . . , εn, . . .],

then the mathematical notation for the output of the algorithm is⊗
i

εi.

The definition of the algorithm amounts to a recursive definition,⊗
i

εi = ε0 ⊗
⊗

i

εi+1,

for a suitable binary operation ⊗ that combines two selection functions.

4

What I intend to do in this talk

1. Explain the main ideas behind selection functionsx and the mathematical
operation

⊗
.

2. Implement some sample applications in functional programming:

1. playing Tic-Tac-Toe,

2. solving the n-Queens puzzle, and

3. deciding equality of functions (!) on certain infinite types.

5

Organization

2. Selection functions.

3. Products of selection functions.

4. Playing games.

5. The Tychonoff Theorem.

6. Monads.

7. The Double-Negation Shift.

Probably too much for a one-hour talk. We’ll see how far we get.

6

Selection functions

If we define

type J r x = (x -> r) -> x

then the type specification of the function bigotimes can be rewritten as

bigotimes :: [J r x] -> J r [x]

The type J r turns out to have the structure of a (strong) monad.

We’ll explore this towards the end of the talk.

7

Quantifiers

To understand the type constructor J, we also consider

type K r x = (x -> r) -> r

Continuation monad, related to call/cc and CPS translation, classical logic.

We regard it as a type of generalized quantifiers with truth values r.

With r = Bool, two elements of the type K r x are the existential and universal
quantifiers.

8

Monad morphism from J r to K r

We’ll use this morphism before we give J r the structure of a monad:

overline :: J r x -> K r x
overline e = \p -> p(e p)

The Haskell notation
overline e

corresponds to the mathematical notation

ε.

This operation transforms selection functions into quantifiers.

9

Terminology

Terminology Mathematics Haskell Type

predicate p, q p, q x -> r
selection function ε, δ e, d J r x = ((x -> r) -> x)

quantifier φ, γ phi, gamma K r x = ((x -> r) -> r)

10

Selection functions for sets

A selection function for a set finds an element for which a given predicate holds.
S ⊆ X
p : X → Bool

ε(p) ∈ S

1. We require our selection functions to be total.

2. We select an arbitrary element of S if none satisfies p.

3. This forces S to be non-empty.

11

Haskell code

find :: [x] -> J Bool x
find [] p = undefined
find [x] p = x
find (x:xs) p = if p x then x else find xs p

forsome, forevery :: [x] -> K Bool x
forsome = overline.find
forevery xs p = not(forsome xs (not.p))

Or, expanding the definitions,

forsome xs p = p(find xs p)

12

Hilbert’s ε-calculus

Our definition of the existential quantifier is the same as in Hilbert’s ε-calculus:

∃x p(x) ⇐⇒ p(ε(p)).

The definition of forevery uses the De Morgan Law for quantifiers,

∀x p(x) ⇐⇒ ¬∃x ¬p(x).

13

E.g.

find [1..100] (\x -> odd x && x > 17) = 19
forsome [1..100] (\x -> odd x && x > 17) = True

find [1..100] (\x -> odd x && even x) = 100
forsome [1..100] (\x -> odd x && even x) = False

As already discussed, we are interested in finite non-empty lists only, to make
sure the produced selection function is total.

14

Summary so far

A selection function ε for a set S has to satisfy:

1. ε(p) ∈ S, whether or not there actually is some x ∈ S such that p(x) holds.

2. If p(x) holds for some x ∈ S, then it holds for x = ε(p).

The first condition forces the set S to be non-empty.

15

Haskell code

We shall need this later:

findBool :: J Bool Bool
findBool p = p True

This is equivalent to

findBool p = if p True then True else False

16

Selection functions for quantifiers

If φ(p) stands for ∃x ∈ S p(x), then Hilbert’s condition can be written as

φ(p) = p(ε(p)),

or equivalently,
φ = ε.

If this equation holds, we say that ε is a selection function for the quantifier φ.

Thus, a selection function for a set S is the same thing as a selection function
for the existential quantifier of S.

17

Example: selection function for a universal quantifier

When φ(p) is the universal quantifier ∀x ∈ S p(x) of the set S, this amounts to

1. ε(p) ∈ S.

2. If p(x) holds for x = ε(p), then it holds for all x ∈ S.

18

Example: selection function for a universal quantifier

When φ(p) is the universal quantifier ∀x ∈ S p(x) of the set S, this amounts to

1. ε(p) ∈ S.

2. If p(x) holds for x = ε(p), then it holds for all x ∈ S.

This is known as the Drinker Paradox.

In every pub there is a person a such that if a drinks then everybody drinks.

Here S is the set of people in the pub, and p(x) means that x drinks, and we
calculate a with the selection function as a = ε(p).

19

Haskell code

A selection function for the universal quantifier of a finite set:

findnot :: [x] -> J Bool x
findnot [] p = undefined
findnot [x] p = x
findnot (x:xs) p = if p x then findnot xs p else x

This satisfies

findnot xs p = find xs (not.p)

and the function forevery defined earlier satisfies

forevery = overline.findnot

20

Another useful instance of r

Consider “predicates” that give numbers rather than boolean truth values.

E.g., the predicate may assign prices to goods.

1. Find the price of the most expensive good.

This is done by a quantifier, called sup.

(Good→ Price)→ Price.

2. Find the most expensive good.

This is done by a selection function, called argsup.

(Good→ Price)→ Good.

21

Maximum-Value Theorem

Any continuous function p : [0, 1]→ R attains its maximum value.

This means that there is a ∈ [0, 1] such that

sup p = p(a).

However, the proof is non-constructive.

A maximizing argument a cannot be algorithmically calculated from p.

22

Mean-Value Theorem

There is a ∈ [0, 1] such that ∫
p = p(a).

Again this a cannot be found from p using an algorithm.

23

Drinker Paradox

Can be written as
∀(p) = p(a).

Finding elements in sets corresponds to

∃(p) = p(a).

We can find a as a = ε(p) if the ranges of the universal and existential
quantifiers are finite.

And we’ll go beyond the finite case below.

24

General situation

With φ among ∃,∀, sup, inf,
∫
, . . . ,

φ(p) = p(a).

In favourable circumstances a can be calculated as

a = ε(p).

25

Haskell code

argsup, arginf :: [x] -> J Int x
argsup [] p = undefined
argsup [x] p = x
argsup (x:y:zs) p = if p x < p y

then argsup (y:zs) p
else argsup (x:zs) p

These will be useful for two-player games in which there can be a draw.

26

Binary product of quantifiers and selection functions

In every pub there are a man a0 and a woman a1 such that if a0 buys a drink
to a1 then every man buys a drink to some woman.

27

Binary product of quantifiers and selection functions

In every pub there are a man a0 and a woman a1 such that if a0 buys a drink
to a1 then every man buys a drink to some woman.

If X0 = set of men and X1 = set of women, and if we define φ = ∀ ⊗ ∃ by

φ(p) = (∀x0 ∈ X0 ∃x1 ∈ X1 p(x0, x1)),

then this amounts to saying that

φ(p) = p(a)

for a suitable pair a = (a0, a1) ∈ X0 ×X1,

Our objective is to calculate such a pair.

28

Binary product of quantifiers and selection functions

We have selection functions for ∀ and ∃, say ε0 and ε1.

We need a selection function ε = ε0 ⊗ ε1 for the quantifier φ = ∀ ⊗ ∃.

29

Binary product of quantifiers

It is easy to define the product ⊗ of quantifiers, generalizing from the previous
example, where φ = φ0 ⊗ φ1 for φ0 = ∀ and φ1 = ∃:

(φ0 ⊗ φ1)(p) = φ0(λx0.φ1(λx1.p(x0, x1))).

30

Binary products of selection functions

The definition of the product of selection functions is a bit subtler:

(ε0 ⊗ ε1)(p) = (a0, a1)

where a0 = ε0(λx0.ε1(λx1.p(x0.x1)))

a1 = ε1(λx1.p(a0, x1)).

We need to check that
ε0 ⊗ ε1 = ε0 ⊗ ε1,

which amounts to

if φ0 = ε1 and φ1 = ε1, then φ0 ⊗ φ1 = ε0 ⊗ ε1.

31

Back to our motivating example

The required man and woman can be calculated with the formula

(a0, a1) = (ε0 ⊗ ε1)(p),

where ε0 and ε1 are selection functions for the quantifiers ∀ and ∃ respectively.

32

Iterated product

Given a sequence of sets X0, X1, . . . , Xn, . . . , write∏
i<n

Xi = X0 × · · · ×Xn−1.

We define
⊗

:
∏

i<n JRXi → JR
∏

i<nXi, by induction on n:⊗
i<0

εi = λp.(),
⊗

i<n+1

εi = ε0 ⊗
⊗
i<n

εi+1.

Informally, and assuming right associativity of ⊗,⊗
i<n

εi = ε0 ⊗ ε1 ⊗ · · · ⊗ εn−1

33

Main property of products of selection functions

Products of quantifiers can be defined in the same way, and

⊗
i<n

εi =
⊗
i<n

εi.

The products are of quantifiers in the left-hand side and of selection functions in
the right-hand side.

34

Haskell code

otimes :: J r x -> J r [x] -> J r [x]
otimes e0 e1 p = a0:a1
where a0 = e0(\x0 -> overline e1(\x1 -> p(x0:x1)))

a1 = e1(\x1 -> p(a0:x1))

bigotimes :: [J r x] -> J r [x]
bigotimes [] = \p -> []
bigotimes (e:es) = e ‘otimes‘ bigotimes es

Although we have motivated this algorithm by considering finite lists, it does
make sense for infinite lists too, as we shall see in due course.

35

Playing games

1. Products of selection functions compute optimal plays and strategies.

2. Generalize products in order to account for history dependent games.

See proceedings for details. (I have the slides but not the time.)

3. Give concise implementations of Tic-Tac-Toe and n-Queens as illustrations.

36

First example

Alternating, two-person game that finishes after exactly n moves.

1. Eloise plays first, against Abelard. One of them wins (no draw).

2. The i-th move is an element of the set Xi.

3. The game is defined by a predicate p :
∏

i<nXi → Bool
that tells whether Eloise wins wins a given play x = (x0, . . . , xn−1).

4. Eloise has a winning strategy for the game p if and only if

∃x0∈X0∀x1∈X1∃x2∈X2∀x3∈X3 · · · p(x0, . . . , xn−1).

37

First example

4. Eloise has a winning strategy for the game p if and only if

∃x0∈X0∀x1∈X1∃x2∈X2∀x3∈X3 · · · p(x0, . . . , xn−1).

If we define

φi =

{
∃Xi

if i is even,

∀Xi
if i is odd,

then this condition for Eloise having a winning strategy can be equivalently
expressed as (⊗

i<n

φi

)
(p).

38

Calculating the optimal outcome of a game

More generally, the value (⊗
i<n

φi

)
(p)

gives the optimal outcome of the game.

This takes place when all players play as best as they can.

In the first example, the optimal outcome is True if Eloise has a winning
strategy, and False if Abelard has a winning strategy.

39

Calculating an optimal play

Suppose each quantifier φi has a selection function εi (thought of as a policy
function for the i-th move).

Theorem. The sequence

a = (a0, . . . , an−1) =

(⊗
i<n

εi

)
(p)

is an optimal play.

This means that for every stage i < n of the game, the move ai is optimal given
that the moves a0, . . . , ai−1 have been played.

40

Finding an optimal strategy

Theorem. The function fk :
∏

i<kXi → Xk defined by

fk(a) =

((
n−1⊗
i=k

εi

)
(λx.p(a++x))

)
0

is an optimal strategy for playing the game.

This means that given that the sequence of moves a0, . . . , ak−1 have been
played, the move ak = fk(a0, . . . , ak−1) is optimal.

41

Second example

Choose R = {−1, 0, 1} instead, with the convention that
−1 = Abelard wins,

0 = draw,

1 = Eloise wins.

The existential and universal quantifiers get replaced by sup and inf:

φi =

{
supXi

if i is even,

infXi
if i is odd.

The optimal outcome is still calculated as
⊗

i<n φi, which amounts to

sup
x0∈X0

inf
x1∈X1

sup
x2∈X2

inf
x3∈X3

· · · p(x0, . . . , xn−1).

42

Second example

The optimal outcome is
−1 = Abelard has a winning strategy,

0 = the game is a draw,

1 = Eloise has a winning strategy.

Can compute optimal outcomes, plays and strategies with the same formulas.

43

History-dependent games

Allowed moves in the next round depend on the moves played so far.

The idea is that the nth selection function depends on the first n played moves.

It selects moves among the allowed ones, which depend on the played ones.

See the proceedings for mathematical details.

44

Haskell code

otimes :: J r x -> (x -> J r [x]) -> J r [x]
otimes e0 e1 p = a0 : a1
where a0 = e0(\x0->overline(e1 x0)(\x1->p(x0:x1)))

a1 = e1 a0 (\x1 -> p(a0:x1))

bigotimes :: [[x] -> J r x] -> J r [x]
bigotimes [] = \p -> []
bigotimes (e:es) =
e[] ‘otimes‘ (\x->bigotimes[\xs->d(x:xs) | d<-es])

45

Implementation of games

We need to define a type R of outcomes, a type Move of moves, a predicate

p :: [Move] -> R

that gives the outcome of a play, and (history-dependent) selection functions for
each stage of the game:

epsilons :: [[Move] -> J R Move]

46

Implementation of games

Each different game needs a different definition

(R, Move, p, epsilons)

47

Implementation of optimal plays

But all games are played in the same way, using the previous theorems:

optimalPlay :: [Move]
optimalPlay = bigotimes epsilons p

optimalOutcome :: R
optimalOutcome = p optimalPlay

optimalStrategy :: [Move] -> Move
optimalStrategy as = head(bigotimes epsilons’ p’)
where epsilons’ = drop (length as) epsilons

p’ xs = p(as ++ xs)

48

Tic-Tac-Toe

data Player = X | O

The outcomes are R = {−1, 0, 1}.

type R = Int

The possible moves are
0 1 2
3 4 5
6 7 8

type Move = Int

type Board = ([Move], [Move])

49

Tic-Tac-Toe

wins :: [Move] -> Bool
wins =
someContained [[0,1,2],[3,4,5],[6,7,8],

[0,3,6],[1,4,7],[2,5,8],
[0,4,8],[2,4,6]]

value :: Board -> R
value (x,o) | wins x = 1

| wins o = -1
| otherwise = 0

50

Tic-Tac-Toe

outcome :: Player -> [Move] -> Board -> Board

outcome whoever [] board = board

outcome X (m : ms) (x, o) =
if wins o then (x, o)
else outcome O ms (insert m x, o)

outcome O (m : ms) (x, o) =
if wins x then (x, o)
else outcome X ms (x, insert m o)

We assume that player X starts, as usual:

p :: [Move] -> R
p ms = value(outcome X ms ([],[]))

51

Tic-Tac-Toe

epsilons :: [[Move] -> J R Move]
epsilons = take 9 epsilons
where epsilons = epsilonX : epsilonO : epsilons

epsilonX h = argsup ([0..8] ‘setMinus‘ h)
epsilonO h = arginf ([0..8] ‘setMinus‘ h)

52

Let’s run this

main :: IO ()
main = putStr
("An optimal play for Tic-Tac-Toe is " ++ show optimalPlay ++
"\nand the optimal outcome is " ++ show optimalOutcome ++ "\n")

Compile and run:

$ ghc --make -O2 TicTacToe.hs
$ time ./TicTacToe
An optimal play for Tic-Tac-Toe is [0,4,1,2,6,3,5,7,8]
and the optimal outcome is 0

real 0m1.721s user 0m1.716s sys 0m0.004s

(Under the operating system Ubuntu/Debian 9.10 in a 2.13GHz machine.)

53

In pictures

X X
O

X X
O

X X O
O

X X O
O

X

X X O
O O
X

X X O
O O X
X

X X O
O O X
X O

X X O
O O X
X O X

54

n-Queens

We adopt the following conventions:

1. A solution is a permutation of [0..(n− 1)], which tells where each queen
should be placed in each row.

1. A move is an element of [0..(n− 1)], saying in which column of the given row
(=stage of the game) the queen should be placed.

55

n-Queens

n = 8
type R = Bool
type Coordinate = Int
type Move = Coordinate
type Position = (Coordinate,Coordinate)

attacks :: Position -> Position -> Bool
attacks (x, y) (a, b) =
x == a || y == b || abs(x - a) == abs(y - b)

valid :: [Position] -> Bool
valid [] = True
valid (u : vs) =
not(any (\v -> attacks u v) vs) && valid vs

56

n-Queens

p :: [Move] -> R
p ms = valid(zip ms [0..(n-1)])

epsilons :: [[Move] -> J R Move]
epsilons = replicate n epsilon
where epsilon h = find ([0..(n-1)] ‘setMinus‘ h)

57

n-Queens

main :: IO ()
main = putStr
("An optimal play for " ++ show n ++ "-Queens is " ++

show optimalPlay ++
"\nand the optimal outcome is " ++ show optimalOutcome ++ "\n")

Compile and run:

$ ghci --make -O2 NQueens.hs
$ time ./NQueens

and we get:

An optimal play for 8-Queens is [0,4,7,5,2,6,1,3]
and the optimal outcome is True

real 0m0.011s user 0m0.012s sys 0m0.000s

58

12-Queens

Get [0, 2, 4, 7, 9, 11, 5, 10, 1, 6, 8, 3] computed in five seconds.

59

The Tychonoff Theorem

1. Close connection of some computational and topological ideas.

2. With applications to computation.

3. No background on topology required.

60

The language spoken in Topology Land

Space.

Continuous function.

Compact space.

Countably based space.

Hausdorff space.

Cantor space.

Baire space.

61

Guided tour to Topology Land

Call a set

1. searchable if it has a computable selection function, and

2. exhaustible if it has a computable boolean-valued quantifier.

We showed that

Exhaustible and searchable sets are compact.

Related to the well-known fact that

Computable functionals are continuous.

Finite parts of the output depend only on finite parts of the input.

62

A widely quoted topological slogan

Infinite compact sets behave, in many interesting and useful ways, as if
they were finite.

This matches computational intuition:

The ability to exhaustively search an infinite set, algorithmically and in
finite time, is indeed a computational sense in which the set behaves as if
it were finite.

It may seem surprising at first sight that there are such sets, but this was known
in the 1950’s or before.

63

Topological properties

Compact sets of total elements form countably based Hausdorff spaces.

64

Importing results from topology to computation

We had previously explored what happens if one looks at theorems in topology
and applies the previous dictionary.

Exhaustible and searchable sets are compact.

Computable functions are continuous.

Searchable sets of total elements form countably based Hausdorff spaces.

65

Some results in topology

1. Finite sets are compact, and hence for example the booleans are compact.

2. Arbitrary products of compact sets are compact (Tychonoff Theorem).

Hence the space of infinite sequences of booleans is compact.

This the Cantor space.

2. Continuous images of compact sets are compact.

3. Any non-empty, countably based, compact Hausdorff space is a continuous
image of the Cantor space.

66

Applying the dictionary, we get

1. Finite sets are searchable, and hence for example the booleans are searchable.

2. Finite and countably infinite products of searchable sets are searchable.

Hence the Cantor space is searchable.

3. Computable images of searchable/exhaustible sets are searchable/exhaustible.

4. Any non-empty exhaustible set is a computable image of the Cantor space.

67

A souvenir from our excursion

Non-empty exhaustible sets are searchable.

This is computationally interesting:

If we have a search procedure that answers yes/no (given by a quantifier),

we get a procedure that gives witnesses (given by a selection function).

68

Haskell code

The Tychonoff Theorem is implemented by the history-free version bigotimes
of the product of selection functions.

Hence a selection function for the Cantor space is given by

findCantor :: J Bool [Bool]
findCantor = bigotimes (repeat findBool)

69

Haskell code

Computable images of searchable sets are searchable:

image :: (x -> y) -> J r x -> J r y
image f e = \q -> f(e(\x -> q(f x)))

70

Application: deciding equality of functionals

Perhaps contradicting common wisdom, we write a total (!) functional that
decides whether or not two given total functionals equivalent:

equal :: Eq z => ((Integer -> Bool) -> z)
-> ((Integer -> Bool) -> z) -> Bool

equal f g = foreveryFunction(\u->f u == g u)

This doesn’t contradict computability theory.

71

Haskell code

Code functions Integers->Bool as lazy lists by storing non-negative and
negative arguments at even and odd indices:

code :: (Integer -> Bool) -> [Bool]
code f = [f(reindex i)| i<-[0..]]
where reindex i | even i = i ‘div‘ 2

| otherwise = -((i+1)‘div‘ 2)

72

Haskell code

But actually we are interested in the opposite direction:

decode :: [Bool] -> (Integer -> Bool)
decode xs i | i >= 0 = xs ‘at‘ (i * 2)

| otherwise = xs ‘at‘ ((-i * 2) - 1)

at :: [x] -> Integer -> x
at (x:xs) 0 = x
at (x:xs) (n+1) = at xs n

73

Haskell code

findFunction :: J Bool (Integer -> Bool)
findFunction = image decode findCantor

forsomeFunction :: K Bool (Integer -> Bool)
forsomeFunction = overline findFunction

foreveryFunction :: K Bool (Integer -> Bool)
foreveryFunction p = not(forsomeFunction(not.p))

This completes the definition of the function equal.

74

Experiment

Here the function c is a coercion:

c :: Bool -> Integer
c False = 0
c True = 1

f, g, h :: (Integer -> Bool) -> Integer
f a = c(a(7 * c(a 4) + 4 * (c(a 7)) + 4))
g a = c(a(7 * c(a 5) + 4 * (c(a 7)) + 4))
h a = if not(a 7)

then if not(a 4) then c(a 4) else c(a 11)
else if a 4 then c(a 15) else c(a 8)

Are any two of these three functions equal?

75

Experiment

When we run this, using the interpreter this time, we get:

$ ghci Tychonoff.hs
...
Ok, modules loaded: Main.

*Main> :set +s
*Main> equal f g
False
(0.02 secs, 4274912 bytes)
*Main> equal g h
False
(0.01 secs, 0 bytes)
*Main> equal f h
True
(0.00 secs, 0 bytes)

76

Experiment

Where do f and g differ?

*Main> take 11 (code (findFunction(\u->g u /= h u)))
[True,True,True,True,True,True,True,True,True,True,False]
(0.05 secs, 3887756 bytes)

We believe that these ideas open up the possibility of new, useful tools for
automatic program verification and bug finding.

77

Monads

It turns out that the function image :: (x -> y) -> J r x -> J r y
defined above is the functor of a monad.

The unit is

singleton :: x -> J r x
singleton x = \p -> x

The multiplication is

bigunion :: J r (J r x) -> J r x
bigunion e = \p -> e(\d -> overline d p) p

78

Haskell code for the monads

See the proceedings.

79

Consequences of having a monad

The history-free version of the functional bigotimes is simply the Haskell
standard prelude function sequence instantiated to the selection monad:

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

where mcons p q =
p >>= \x->q >>= \y->return (x:y)

Thus, our computational manifestation of the Tychonoff Theorem is already in
the Haskell standard prelude, and becomes immediately available once one
defines the selection monad.

80

The history-dependent product

Can also be defined for any monad. See the paper.

81

The Double-Negation Shift

∀n ¬¬(An) =⇒ ¬¬∀n (An).

Used by Spector’62 to realize the Classical Axiom of Countable Choice.

He used the dialectica interpretation.

We use Kreisel’s modified realizability.

82

K-shift

Generalized double negation shift.

Monad KA = (A→ R)→ R.

∀xK(Ax) =⇒ K∀x (Ax).

Algebra KA→ A: proposition A with double-negation elimination.

CPS-translation = Gödel–Gentzen negative translation.

83

J-shift

Gives the double negation shift via the monad morphism J → K.

Monad JA = (A→ R)→ A.

∀xJ(Ax) =⇒ J∀x (Ax) directly realized by
⊗

.

Algebra JA→ A: proposition A that satisfies Peirce’s Law.

Get translation based on J rather than K.

Get witnesses from classical proofs that use countable choice using
⊗

.

84

Concluding remarks

Diverse mathematical subjects coexist harmoniously and have a natural bed in
functional programming:

1. game theory (optimal strategies),

2. topology (Tychonoff Theorem),

3. category theory (monads), and

4. proof theory (double-negation shift, classical axiom of choice).

85

Selection functions everywhere

It is the selection monad that unifies these mathematical subjects.

Its associated product functional
⊗

1. computes optimal strategies,

2. implements a computational manifestation of the Tychonoff Theorem,

3. realizes the double-negation shift and the classical axiom of choice.

86

Thanks!

87

