
Introduction A programming language Reasoning about program equivalence Domain theory and topology

Semantics
for the lazy functional programmer

Mart́ın Escardó

School of Computer Science, Birmingham University, UK

MGS 2009, Leicester, UK, 30th March — 3rd April

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Programming language semantics

Officially, it investigates the “meaning” of (types and) programs.

A systematic collection of mathematical tools for reasoning about
programs and programming languages, in a “compositional” way.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Two main kinds of programming language semantics

1 Operational.

How programs are run (or executed or evaluated).

2 Denotational.

What types and programs are thought of.
E.g.

1 Types are sets, programs are functions.
2 Types are domains, programs are continuous functions.
3 Types are game arenas, programs are strategies.
4 Types are objects of a category, programs are morphisms.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

What they have in common

Both are concerned with program equivalence and correctness.

When are two programs to be considered the same
for all purposes, except time and space efficiency?

(But some kinds of semantics consider efficiency too.)

Introduction A programming language Reasoning about program equivalence Domain theory and topology

These lectures: a blend of the two

1 Operational semantics based on ideas from denotational
semantics.

2 Particularly from domain theory.

3 Domain theory itself relies on order and topology.

4 We’ll develop both, but directly in operational semantics.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Some references:

Our starting point is recorded in:
1. Pitts. Operationally-Based Theories of Program Equivalence.

We follow this up:
2. Escardo and Ho. Operational domain theory and topology of
sequential programming languages.

Recommended book for denotational semantics:
3. T. Streicher. Domain-theoretic foundations of functional
programming. World Scientific, 2006, 120 pages.

Unfortunately, I won’t have time to develop denotational semantics.

But I intend to give a good perspective for you to approach it on
your own.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Some reasons for considering program semantics

1 Specification of the language compiler. Is it correct?

2 Understand rigorously what programs do.

3 Design programs to do what we want.

4 Be able to say rigorously what we want.

5 Be able to prove that programs (don’t) do what we want.

6 Discover (sometimes counter-intuitive) facts about programs.

7 Design new languages, improve/redesign existing languages.

8 Scientific curiosity.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Example 1

Consider “minimal Haskell”: Booleans, integers, finite products,
function types, lazy lists, full recursion, λ-calculus.

Define:

or :: Bool -> Bool -> Bool
or x y = if x then True else y

Then:

or False False = False
or False True = True
or True False = True
or True True = True

Introduction A programming language Reasoning about program equivalence Domain theory and topology

But

or True bot = True = if True then True else bot
or bot True = bot = if bot then True else True

Here

bot :: a -> a
bot = bot

Hence
or x y 6= or y x

in general.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Example 2

Claim. There is no “parallel or” function

por :: Bool -> Bool -> Bool

such that

por False False = False
por x True = por True y = True

for all x and y of type Bool.

Questions.

1 Why, intuitively?

2 How does one actually rigorously prove this?

3 Can the language be extended to accomodate this?

4 Do we want this?

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Exercise

How many or-like functions

f :: Bool -> Bool -> Bool

can you define in Haskell that satisfy

f False False = False
f False True = True
f True False = True
f True True = True

but behave differently at bot?

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Example 3

Define

orL, orR :: Bool -> Bool -> Bool

orL x y = if x then True else y
orR x y = if y then True else x

Then, although
orL 6= orR

they are equivalent,
orL ∼ orR,

in the sense that they behave in the same way on total elements.

Questions.

1 How does one make this precise?

2 How should totality be defined?

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Example 4

Define

type Z = Integer
type Cantor = Z -> Bool

Claim. There is a total program

equal :: (Cantor -> Z) -> (Cantor -> Z) -> Bool

such that for all total f, g :: Cantor -> Z

equal f g = True

iff f and g are equal on total inputs.

Question. Really? How can this be? What is the program?

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Example 5

Define

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

Intuitively,

iterate f x = [x, f x, f(f x), f(f(f x)), ...]

This is an infinite list.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Claim.

map f (iterate f x) = iterate f (f x).

Intuitively, this is so because both sides are equal to

[f x, f(f x), f(f(f x)), f(f(f(f x))), ...]

Question. How does one prove claims such as this?

Introduction A programming language Reasoning about program equivalence Domain theory and topology

The programming language PCFL

I’ll consider a subset of the language Haskell.

1 Base types for booleans and integers.

2 Finite products.

3 Function types.

4 Recursion.

5 Lazy lists.

A precise description of the syntax is given in:
Pitts. Operationally-Based Theories of Program Equivalence.

Also look at:
Plotkin. LCF considered as a programming language.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Main concepts

1 Terms, raw syntax of the language.

2 Types.

3 Contexts.

4 Terms in context.

5 Rules for type assignment.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Syntax

L,M,N ::= syntactical variables x , y , z , f , g , . . .

|λx .M

|MN

| fix x .M

|True |False

| if L then M else N

| 0 | 1 | 2 | . . . | n | . . .
|M op N

|(M,N)

| fst M | snd M

| nil |M : N

| case L of{nil→ M | x : xs → N}

Introduction A programming language Reasoning about program equivalence Domain theory and topology

From Haskell recursion to PCFL recursion

Syntax in Haskell:

double :: Natural -> Natural
double 0 = 0
double (n+1) = 2 + double n

Step 1. Rewrite as a single equation:

double = \n -> if n == 0 then 0 else 2 + double(n-1)

Step 2. Make double into a variable, and define, without
recursion:

f :: (Natural -> Natural) -> (Natural -> Natural)
f double = \n -> if n == 0 then 0 else 2 + double(n-1)

Then double satisfies the equation in Step 1 iff

double = f(double)

Syntax in PCFL:

fix double -> \n -> if n == 0 then 0 else 2 + double(n-1)

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Types

Ground types:
γ ::= Integer |Bool .

General types:

σ, τ ::= γ

|σ → τ

|σ × τ
|[σ]

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Type assertions

See Pitts Figure 2 in page 247, and Lambda Calculus lectures.

1 Γ ` M : σ.

2 Γ is a function from a set of variables to types.

3 Expσ(Γ) is the set of terms that can have type σ in the type
assignment Γ.

4 Expσ the set of closed terms of type σ.

5 By an abuse of notation, we often write Expσ as σ.
E.g.

1 3 + 5 ∈ Integer.
2 λx .x + 3 ∈ (Integer→ Integer)

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Program evaluation

Main concepts:

1 Canonical forms (or values) v .

2 Algorithmic rules definining the evaluation relation M ⇓ v .

3 Basic properties (determinacy, subject reduction).

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Canonical forms (or values)

v ,w ::= True |False

| 0 | 1 | 2 | . . . | n | . . .
|λx .M

|(M,N)

| nil | M : N

Idea: When we reach a canonical form, we stop evaluation.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Evaluation relation (big-step style)

(Small-step style given in the functional programming course.)
Inductively defined relation “term⇓ canonical form”.

v ⇓ v

L⇓True M ⇓ v

if L then M else N ⇓ v

L⇓False N ⇓w

if L then M else N ⇓w

M ⇓m N ⇓ n

M op N ⇓m op n

L⇓λx .N N[x := M]⇓ v

LM ⇓ v

M[x := fix x .M]⇓ v

fix x .M ⇓ v

L⇓(M,N) M ⇓ v

fst L⇓ v

L⇓(M,N) N ⇓w

snd L⇓w

L⇓ nil M ⇓ v

case L of{nil→ M | x : xs → N} ⇓ v

L⇓H : T N[x := H, xs := T]⇓w

case L of{nil→ M | x : xs → N} ⇓w

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Program equivalence, intuitively

Haskell programmer’s version.

Two programs of integer type are equivalent iff they both evaluate
to the same number, or both diverge.

Two programs of functional type are equivalent if they produce
equivalent outputs for equivalent inputs.

(But how about, e.g., lazy lists?)

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Program equivalence, intuitively

Compiler-writer’s version.

Two terms are equivalent if when one is substituted for the other
in the same program of observable type, no behavioural change
can be observed in the resulting program.

Important for code optimization.

1 The programmer writes down a recipe for some behaviour.

2 Any optimization the compiler performs is allowed to change
the internal behaviour, but not the external observable
behaviour.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Program equivalence, intuitively

Denotational semantics minded person’s version.

Two programs are equivalent when they denote the same element
of the model.

E.g.

1 The same number.

2 The same lazy list.

3 The same function.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Which notion of equivalence is right?

All of them have their uses!

In any case, all of them agree for terms of observable type.

So, any difference arises only on terms of non-observable type.

My contention is that we are free to play with the meaning of
terms of non-observable type, provided our choices don’t interfere
with the sacred meaning of terms of observable type.

In these lectures I chose to adopt the compiler writer’s view.
(But this doesn’t matter much, as I’ll explain as we proceed.)

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Contextual equivalence

Main concepts:

1 Ground contexts.

2 (Variable capturing) context substitution.

3 Typed contexts.

4 Contextual equivalence and preorder.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Ground contexts

A context is a term with a missing subterm.

We can supply the missing term M in a context C obtaining a
term C [M].
(See Pitts’ notes for a formal definition.)

We are interested in contexts of ground type.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Contextual equivalence

See Pitts page 252.

Definition

We write M = N to mean that for every ground context C
capturing all free variables of M,N:

C [M]⇓ v ⇐⇒ C [N]⇓ v .

Other terminologies:

1 Observational equivalence.

2 Operational equivalence.

This is reflexive, transitive and symmetric.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Contextual preorder

Definition

We write M v N to mean that for every ground context C
capturing all free variables of M,N:

C [M]⇓ v =⇒ C [N]⇓ v .

Other terminologies:

1 Observational preorder.

2 Operational preorder.

This is reflexive and transitive.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Examples/exercises

Define ⊥ = fix x .x , say for x : Integer.

1 There is no v such that ⊥⇓ v .

2 ⊥ v 3.

3 ⊥ v M for any M.

4 (⊥, 3,⊥) v (2, 3,⊥).

5 (2,⊥,⊥) v (2, 3,⊥).

6 The least upper bound of (⊥, 3,⊥) and (2,⊥,⊥) is (2, 3,⊥).

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Examples/exercises

Define

bot :: a -> a
bot = bot

f :: Integer -> Integer -> Integer
f 0 n = bot
f (k+1) 0 = 1
f (k+1) n = n * f k (n-1)

Write this without pattern matching, using fix.
Show that:

1 f k n = ⊥ ⇐⇒ k < n.

2 f n n = n!.

3 If f k n v f (k + 1) n.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Properties of contextual equivalence and preorder

1 Adequacy.

2 (In)equational logic.

3 β-rules.

4 Extensionality.

5 Recursion unfolding.

6 Rational completeness and continuity.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Adequacy

Recall that γ ranges over ground types.

If M : γ is a closed term, then

M = v ⇐⇒ M ⇓ v .

If M,N : γ are closed then M = N iff M ⇓ v ⇐⇒ N ⇓ v .

Introduction A programming language Reasoning about program equivalence Domain theory and topology

(In)equational logic

See Pitts page 254.

1 M v N implies M[x := L] v N[x := L].

2 M = N implies M[x := L] = N[x := L].

3 x v x .

4 If x v y and x v y then x v y .

5 x v y and x v y iff x = y .

6 x = y implies y = x .

7 If x = y and y = z implies y = z .

8 y v y ′ implies λx .y v λx .y ′.

9 y v y ′ implies fix x .y v fix x .y ′.

10 l v l ′ and y v y ′ and z v z ′ implies

case l of{nil→ y | x : xs → z}
v case l ′ of{nil→ y ′ | x : xs → z ′}.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

β-rules

1 (λx .M)N = M[x := N].

2 if True then x else y = x .

3 if False then x else y = y .

4 m op n = m op n.

5 fst(M,N) = M.

6 snd(M,N) = N.

7 case nil of{nil→ M | x : xs → N} = M.

8 case(H : T) of{nil→ M | x : xs → N} = N[x := H, xs = T].

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Extensionality

1 ~x : ~σ ` L = M iff L[~x := ~N] = M[~x := ~N] for all closed ~N : ~σ.

2 If f , g : σ → τ then f = g iff f x = g x for all x : σ.

3 If p, q : σ × τ then p = q iff fst p = fst q and snd p = snd q.
4 For all l , l ′ : [σ], we have l = l ′ iff

1 l = nil implies l ′ = nil, and
2 l = x : xs implies l ′ = x : xs,

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Order extensionality

1 ~x : ~σ ` L v M iff L[~x := ~N] v M[~x := ~N] for all closed ~N : ~σ.

2 If f , g : σ → τ then f v g iff f x v g y for all x v y : σ.

3 If p, q : σ × τ then p v q iff fst p v fst q and snd p v snd q.
4 For all l , l ′ : [σ], we have l v l ′ iff

1 l = nil implies l ′ = nil, and
2 l = x : xs implies l ′ = x ′ : xs ′ for some x ′ w x and xs ′ w xs,

Introduction A programming language Reasoning about program equivalence Domain theory and topology

η-rules

f = λx .f x .

b = if b then True else False .

p = (fst p, snd p).

l = case l of{nil→ nil | x : xs → x : xs}.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Recursion unfolding

fix x .M = M[x := fix x .M]

We write
fix F = fix x .F x

where x doesn’t occur free in F .

Then the above can be expressed as

fix f = f (fix f).

That is, fix f is a fixed point of f .

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Least (pre-)fixed points

For f : σ → σ and x : σ

f x v x =⇒ fix f v x .

In particular
f x = x =⇒ fix f v x .

This says that fix f is the least fixed-point of f .

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Syntactic bottom

The term ⊥ = fix x .x acts as a least element:

⊥ v x .

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Rational completeness

⊥ v f (⊥) v f 2(⊥) v · · · f n(⊥) v f n+1(⊥) v · · ·

Moreover:
fix f v x ⇐⇒ f n(⊥) v x for all n.

That is, fixed points are least upper bounds:

fix f =
⊔
n

f n(⊥).

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Rational continuity

More generally:

g(⊥) v g(f (⊥)) v g(f 2(⊥)) v · · · g(f n(⊥)) v g(f n+1)(⊥) v · · ·

and

g(fix f) v y ⇐⇒ g(f n(⊥)) v y for all n.

That is:

g(fix f) =
⊔
n

g(f n(⊥)).

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Rational chains

Definition

A rational chain is a sequence of the form

xn = g(f n(⊥)).

The above says that every rational chain has a least upper bound,
namely

g(fix f).

However, not every increasing chain has a least upper bound.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Domain theory and topology

We’ll introduce two new types to PCFL, which in Haskell can be
defined as

data Sierp = Top
data OmegaBar = S OmegaBar

1 Sierp has two elements, Top and bot.

2 OmegaBar has elements

bot, S bot, S(S bot), S(S(S bot)), ..., infty

where

infty = S infty

Introduction A programming language Reasoning about program equivalence Domain theory and topology

PCFL + S + ω̄

Add two new base types.

Sierpinski space: S.

Vertical natural numbers: ω̄.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

PCFL + S + ω̄

Terms:

1 > : S is a term.

2 If M : S and N : σ are terms then (if M then N) : σ is a term.

3 If M : ω̄ is a term then so are (M + 1): ω̄ and (M − 1) : ω̄ and
(M > 0) : S.

Remarks:

1 Notice that there is no “else” clause in the above construction.

2 The only value (or canonical form) of type S is >.

3 The values of type ω̄ are the terms of the form M + 1.

4 The role of zero is played by divergent computations.

5 A term (M > 0) can be thought of as a convergence test.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

PCFL + S + ω̄

Big-step operational semantics:

M ⇓> N ⇓ v

(if M then N)⇓ v

M ⇓N + 1 N ⇓ v

M − 1⇓ v

M ⇓M ′ + 1

M > 0⇓>

Introduction A programming language Reasoning about program equivalence Domain theory and topology

The Sierpinski type captures observational equivalence

M v N iff for any context C [−] : S that captures the free variables
of M and N, if C [M] = > then C [N] = >,

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Elements of a type

1 An element of a type is a closed term of that type.

2 We adopt usual set-theoretic notation.

3 E.g. we write x ∈ σ and f ∈ (σ → τ).

4 We occasionally refer to elements of function types as
functions.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Observational equivalence and order for elements

The above definitions and observations specialize to:

1 x = y in σ iff for every p ∈ (σ → S),

p(x) = > ⇐⇒ p(y) = >.

2 x v y in σ iff for every p ∈ (σ → S),

p(x) = > =⇒ p(y) = >.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

The elements of S

1 The elements ⊥ and > of S are contextually ordered by

⊥ v >.

2 They are contextually inequivalent.

3 Any element of S is equivalent to one of them.

4 We think of S as a type of outcomes of observations or
semi-decisions.

5 > is “observable true” and ⊥ is “unobservable false”.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

The elements of ω̄

1 ∞ = fix x .x + 1 ∈ ω̄.

2 By an abuse of notation, for n ∈ N we write n to denote the
element succn(⊥) of ω̄, where succ(x) = x + 1.

3 The elements 0, 1, 2, . . . , n, . . . ,∞ of ω̄ are all contextually
inequivalent, and any element of ω̄ is contextually equivalent
to one of them.

4 They are contextually ordered by

0 v 1 v 2 v . . . v n v . . . v ∞.

5 E.g. we have 0− 1 = 0 and (x + 1)− 1 = x and (0 > 0) = ⊥
and (x + 1 > 0) = > and ∞− 1 =∞ and (∞ > 0) = >.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

The generic rational chain

Lemma

The sequence 0, 1, 2, . . . , n, . . . in ω̄ is a rational chain with least
upper bound ∞, and, for any l ∈ (ω̄ → σ),

l(∞) =
⊔
n

l(n).

Proof.

n = succn(⊥) and ∞ = fix succ.
Hence we can take g = l and f = succ.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

The generic rational chain

Lemma

A sequence xn ∈ σ is a rational chain if and only if there exists
l ∈ (ω̄ → σ) such that for all n ∈ N,

xn = l(n),

and hence such that
⊔

n xn = l(∞).

Proof.

(⇒): Given f ∈ (τ → τ) and g ∈ (τ → σ) with xn = g(f n(⊥)),
recursively define

h(y) = if y > 0 then f (h(y − 1)).

Then h(n) = f n(⊥) and hence we can take l = g ◦ h.
(⇐): Take g = l and f (y) = y + 1.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Rational continuity revisited

Proposition

If f ∈ (σ → τ) and xn is a rational chain in σ, then

1 f (xn) is a rational chain in τ , and

2 f (
⊔

n xn) =
⊔

n f (xn).

Proof.

Take l ∈ (ω̄ → σ) such that xn = l(n).
Then the definition l ′(y) = f (l(y)) shows that f (xn) is rational.
Now calculate:
f (

⊔
n xn) = f (l(∞)) = l ′(∞) =

⊔
n l ′(n) =

⊔
n f (l(n)) =

⊔
n f (xn).

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Particular case

Corollary

For any rational chain fn in (σ → τ) and any x ∈ σ,

1 fn(x) is a rational chain in τ , and

2 (
⊔

n fn)(x) =
⊔

n fn(x).

Proof.

Apply the above to the evaluation functional F ∈ ((σ → τ)→ τ)
defined by F (f) = f (x).

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Topology

Definition

We say that a set U of elements of a type σ is open if there is
χU ∈ (σ → S) such that for all x ∈ σ,

χU(x) = > ⇐⇒ x ∈ U.

Exercise. The subset {>} of S is open, but {⊥} is not. Enumerate
all open subsets.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Axioms for topology

Definition

We say that a sequence of open sets in σ is a rational chain if the
corresponding sequence of characteristic functions is rational in the
type (σ → S).

Proposition

For any type, the open sets are closed under the formation of

1 finite intersections and

2 rational unions.

Proof.

Programming exercise.

(Unless the language has parallel features, the open sets don’t
form a topology in the classical sense.)

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Topological continuity

Proposition

For any f ∈ (σ → τ) and any open subset V of τ , the set
f −1(V) = {x ∈ σ | f (x) ∈ V } is open in σ.

Proof.

If χV ∈ (τ → S) is the characteristic function of the set V then
χV ◦ f ∈ (σ → S) is that of f −1(V).

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Specialization order

Lemma

For x , y ∈ σ, the relation x v y holds iff x ∈ U implies y ∈ U for
every open subset U of σ.

Hence ↑ x
def
= {y ∈ σ | x v y} =

⋂
{U open in σ | x ∈ U}.

Proof.

This is a reformulation of a property stated above.
The conclusion follows from the definition of intersection.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Open sets are Scott open

Proposition

For any open set U in a type σ,

1 if x ∈ U and x v y then y ∈ U, and

2 if xn is a rational chain with
⊔

xn ∈ U, then there is n ∈ N
such that already xn ∈ U.

Proof.

(1): By monotonicity of χU .
(2) By rational continuity of χU : If

⊔
xn ∈ U then

> = χU(
⊔

n xn) =
⊔
χU(xn) and hence > = χU(xn) for some n,

i.e., xn ∈ U.

Introduction A programming language Reasoning about program equivalence Domain theory and topology

Next

1 Finite elements.

2 Continuity in terms of finite elements.

3 Proof principles based on finite elements.

	Introduction
	A programming language
	Reasoning about program equivalence
	Domain theory and topology

