
Domain theory and denotational
semantics of functional programming

Mart́ın Escardó
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What is denotational semantics?

Very abstract answer:

types are objects of a category,

programs are morphisms of this category.

Concrete examples:

1. category of sets (when it works).

2. categories of domains.

3. realizability toposes.

4. categories of games.
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Why denotational semantics?

1. Mathematical models aid program verification.

2. They guide the construction of programming languages.

3. Sometimes they allow one to discover new algorithms.

Games. (Un)decidability of observational equivalence.

Domains. (Un)decidability of function equality.

4. 〈Fill in your favourite answer here.〉
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Why various kinds of denotational semantics?

Different mathematical aspects are addressed/emphasized:

Domains. Finite approximation of infinite objects.

Realizability. Constructive logic and computability.

Games. Interaction, sequentiality.
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Operational versus denotational semantics

Operational semantics tells you how your programs are run.

Denotational semantics tells you what your programs compute.
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Operational versus denotational semantics

Definition, to be made precise:

Adequacy. For observable types, the two agree.

Full abstraction. Operational and semantic equivalence agree.

Universality. All computable elements are programmable.

Universality =⇒ full abstraction =⇒ adequacy.

The converses fail.
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One would like

Types are sets.

Programs are functions.

Life would be much simpler if this were always possible

(but perhaps less exciting).

(Synthetic domain theory rescues this wish.)
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When do plain sets work?

E.g.

1. Gödel’s system T : typed λ-calculus with primitive recursion.

2. Martin-Löf type theory.

3. Typed λ-calculus with (co)inductive types.

(But, for all I know, full abstraction for these may fail.)
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When plain sets don’t work?

E.g.

1. Function recursion.

2. Type recursion, e.g. D ∼= (D → Bool).

3. Certain total functionals.

a. Fan functional.

b. Bar recursion.

Dana Scott (1969, 1972) proposed to use domains.

Ershov independently (motivation higher-type computability).
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Precursors of domain theory

Kleene’s recursion theorem.

Can find f such that f = F (f).

Myhill–Shepherdson theorem.

Computable functions (N → N) → (N → N) are continuous.

Rice–Shapiro theorem.

Semidecidable subsets of P N are Scott open.

Platek’s approach to Kleene–Kreisel higher-type computability.

E.g. which ((N → N) → N) → N are computable?
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What is a domain?

A set, with concrete, finite elements,

together with ideal, infinite elements such that

ideal elements are uniquely determined by

their concrete approximations.

This can be made precise in a number of ways.
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Example

Consider programs (in any suitable language) that output bits

either for ever, or else until they get stuck (in an infinite loop).

E.g.

(a) while (true) { | (b) while (true) { | (c) print 0;
print 0; | } | print 1
print 1; | | while (true) {

} | | }

Domain-theoretic denotations:

(a) (01)ω, (b) ε, (b) 01.
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Example continued

See whiteboard for a picture of the Cantor tree.

The runs of such programs correspond to paths in the Cantor tree.

E.g. (1) corresponds to the path

ε︸︷︷︸
α0

, 0︸︷︷︸
α1

, 01︸︷︷︸
α2

, 010︸︷︷︸
α3

, 0101︸︷︷︸
α4

, 01010︸ ︷︷ ︸
α5

, . . . .
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Concrete versus ideal

Using notation to be made precise later:

(01)ω︸ ︷︷ ︸
what you imagine

=
⊔
i≥0︸︷︷︸

glue together

αi︸︷︷︸
what you see

Terminologies for this operation: join, supremum, least upper

bound.
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Making this example precise

The set is D = {0, 1}∗︸ ︷︷ ︸
nodes of the tree

∪ {0, 1}ω︸ ︷︷ ︸
infinite paths

.

For α, β ∈ D, write

α v β

to mean that α is a prefix of β.
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Making this example precise

This is a partial order :

Reflexivity. α v α.

Transitivity. α v β v γ =⇒ α v γ.

Anti-symmetry. α v β & β v α =⇒ α = β.
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Making this example precise

For any path

α0 v α1 v α2 v · · · v αi v · · ·

there is β ∈ D such that

1. αi v β for all i.

2. If, for another β′ ∈ D,

1’. αi v β′ for all i,

then β v β′.
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Making this example precise

For any path

α0 v α1 v α2 v · · · v αi v · · ·v β v β′

there is β ∈ D such that

1. αi v β for all i. (β is an upper bound of the sequence αi.)

2. If, for another β′ ∈ D,

1’. αi v β′ for all i, (β′ is an other upper bound.)

then β v β′. (So β is the least upper bound.)
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Making this example precise

For any path

α0 v α1 v α2 v · · · v αi v · · ·

there is β ∈ D such that

1. β is an upper bound of the sequence αi.

2. β is below any other upper bound β′.

This β is unique. Why?

We write β =
⊔

i αi.
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Summary

D is an ω-complete poset.

Sometimes domain is taken to mean ω-complete poset with a least

element ⊥.

In this example, ⊥ is the empty sequence ε.
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Another example: lazy lists in Haskell

For any type σ, there is a type [σ] of finite and infinite lists.

It has the following elements:

1. The bottom sequence “[”.

1’. More generally, “[x1, x2, . . . , xn” with xi ∈ d.

2. Their terminated versions “[x1, x2, . . . , xn]”.

3. Infinite sequences “[x1, x2, . . . , xn, . . .”

and nothing else

Order: To be added. Board for the moment.
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Simpler examples

The type Bool in Haskell. Has three elements: True, False,⊥.

Order: True and False are maximal, ⊥ is minimal.

The type Integer in Haskell. Has all the integers plus ⊥.

Order: Integers are maximal, ⊥ is minimal.

All paths are trivial. The orders are ω-complete.
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Semantics of programs and of function types

If two types σ and τ are interpreted as domains D and E, then the

function type (σ → τ) is interpreted as a domain (D → E).

Question. What (D → E) should/can be?

1. All functions?

2. The computable functions?

Answer. Something in between.

3. The continuous functions.

Why? Answer postponed until we see some examples.
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Continuity — computational motivation

A function f : D → E is continuous if finite parts of f(x) depend

only on finite parts of x.
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Continuity — a special case first

Consider D = {0, 1}∗ ∪ {0, 1}ω ordered by prefix.

Definition. f : D → D is monotone if

α v β =⇒ f(α) v f(β).

If you supply more input, you get more output.

Definition. f is of finite character if

whenever β v f(α) for β finite,

there is α′ v α finite such that already β v f(α′).
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Continuity — a special case first

Theorem. For f : D → D monotone, TFAE:

1. f is of finite character.

2. For every path

α0 v α1 v α2 v · · · v αi v · · ·

with

α∞ =
⊔

i αi

one has

f(α∞) =
⊔

i f(αi).
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Continuity — a special case first

Theorem. For f : D → D monotone, TFAE:

1. f is of finite character.

2. For every path

α0 v α1 v α2 v · · · v αi v · · ·

one has

f(
⊔

i αi) =
⊔

i f(αi).

Proof. Exercise! Hint. First show that α′ is finite iff whenever

α′ v
⊔

i αi for αi ascending, there is i such that already α′ v αi. �
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Continuous function

We make the previous theorem into a definition:

Definition. A function of domains is continuous iff

1. it is monotone, and

2. it preserves joins of ascending sequences.
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Interpretation of function types

If two types σ and τ are interpreted as domains D and E, then the

function type (σ → τ) is interpreted as the domain (D → E).

Definition. (D → E) = set of continuous functions D → E

ordered pointwise.

This means: f v g iff f(x) v g(x) for all x ∈ D.

Theorem. If D and E are domains, then so is (D → E).
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Some examples.

Use board.
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Products

If two types σ and τ are interpreted as domains D and E, then the

product type (σ × τ) is interpreted as the domain (D × E).

Definition. (D × E) = cartesian product ordered coordinatewise.

This means: (x, y) v (x′, y′) iff x v x′ and y v y′.

Theorem. If D and E are domains, then so is (D × E).
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Note on Haskell products and function types

Interpreted as (D × E)⊥ and (D → E)⊥.

E.g. the following two functions are different (using seq):
f,g :: a -> b
f = f
g x = g x

Then
seq f True

diverges, but
seq g True

evaluates to True.
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Note on Haskell products and function types

So,

1. Haskell products are not categorical, and

2. Haskell is not cartesian or monoidal closed.

In particular, curry(uncurry(f)) 6= f in general.
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Interaction between products and function spaces

Theorem. Continuous functions of domains form a cartesian closed

category.

This amounts to:

1. The evaluation function eval : (D → E)×D → E

defined by eval(f, x) = f(x) is continuous.

2. If f : C ×D → E is continuous, then so is the

function f̄ : C → (D → E) defined by f̄(x) = λy.f(x, y).
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Consequence of cartesian closedness

Theorem. If a function is λ-defined from continuous functions,

then it is itself continuous.

Application. Consider a functional programming language based on

the simply typed λ-calculus, with some primitive functions that are

continuous.

Then all functions definable in this language are automatically

continuous.

E.g. Haskell, PCF.
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Interpretation of recursion — introduction

A recursive definition of a function f : D → E can always be

written in the form

f(x) = F (f, x).

for a suitable continuous F : (D → E)×D → E.

Equivalently,

f = λx.F (f, x)

or, with G = F̄ ,

f = G(f).
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Interpretation of recursion — example

fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact(n-1)

Take the opportunity to give the semantics of primitive functions.

Now define

G :: (Integer -> Integer) -> (Integer -> Integer)
G f = \n -> if n == 0 then 1 else n * f(n-1)

Then the above definition is equivalent to

fact = G(fact)

36



Interpretation of recursion — questions

Conversely, given any G : (D → E) → (D → E), one can

recursively define f : D → E by

f = G(f).

Questions.

1. Is there any continuous function f such that f = G(f).

If not, we are in trouble.

2. Is there more than one?

3. If so, which one do we choose?
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Interpretation of recursion — another example

One can recursively define elements too.

naturals :: [Integer]
naturals = 0 : map (1+) naturals

Moreover, for any g : C → C one can recursively define x ∈ C by

x = g(x).
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Interpretation of recursion — is it possible?

Summary:

1. For any continuous G : (D → E) → (D → E)

there must be f ∈ (D → E) such that f = G(f).

2. For any continuous g : C → C

there must be x ∈ C with x = g(x).

But

3. With C = (D → E) and g = G and x = f ,

requirement (2) is a particular case of (1).
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Interpretation of recursion — theorem

If D is an ω-complete poset with a least element ⊥, then any

continuous f : D → D has a least fixed point.

That is:

1. There is x ∈ D such that x = f(x).

2. If y = f(y) then x v y.

Proof sketch. Take x =
⊔

n fn(⊥) and show that this choice works.

40



Interpretation of recursion — adequacy

Question. Why is it sensible to interpret recursive definitions as

least fixed points?

Answer. This is justified by a theorem called computational

adequacy , to be given later.

Roughly, this says that, with this interpretation, the denotational

and the operational semantics agree at observable types.
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Continuity of the fixed-point operator

Theorem. The function fix: (D → D) → D that sends a

continuous function to its least fixed point is continuous.

Proof. Trick.

Let E = ((D → D) → D) and define Φ: E → E by

Φ(F ) = λf.f(Ff).

Then Φ has a least fixed point F , which is a continuous function.

But F =
⊔

n Φn(⊥) =
⊔

n λf.fn(⊥) = λf.
⊔

n fn(⊥).

That is, F = fix, and so fix is continuous. Q.E.D.
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The functional language PCF

Scott (1969), Plotkin (1977). Streamed-down version of Haskell.

Simply typed λ-calculus with base types for natural numbers and

booleans, and with recursion. Call-by-name evaluation.

Primitive operations: basic arithmetic and comparisons,

conditional, fixed-point functionals.

It comes with a program logic, called LCF.

The domain-theoretic interpretation of PCF validates the axioms of

the logic. We’ll come back to this.
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Sample application

I’ll consider a surprising program, due to Ulrich Berger (1990).

It performs a seemingly impossible task:

Given a predicate p defined on infinite sequences of bits,

it checks whether or not p holds for all infinite sequences of bits.
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Berger’s functional — preliminaries

type Z = Integer
type Baire = [Z]

The specification of Berger’s functional, to be given below, talks

about infinite sequences of bits.

Let Cantor denote this subset of Baire.

We say that p ∈ (Baire→ Bool) is defined on Cantor if

p(α) 6= ⊥ for all α ∈ Cantor.
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Specification of Berger’s functional

berger :: (Baire -> Bool) -> Baire

For every p ∈ (Baire→ Bool), if p is defined on Cantor then

the program berger finds α ∈ Cantor such that p(α) holds, if

such an α exists, always returning an element of Cantor.
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Specification of Berger’s functional — bis

berger :: (Baire -> Bool) -> Baire

For every p ∈ (Baire→ Bool), if p is defined on Cantor then

1. berger(p) ∈ Cantor, and

2. p(berger(p)) = True iff p(α) = True

for some α ∈ Cantor.
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Corollary: exhaustive search over infinite sets

forsomeC, foreveryC :: (Baire -> Bool) -> Bool
forsomeC p = p(berger p)
foreveryC p = not(forsomeC(\a -> not(p a)))

equalC :: (Baire -> Z) -> (Baire -> Z) -> Bool
equalC f g = foreveryC(\a -> f a == g a)

Theorem. For f and g defined on Cantor, equalC(f)(g) = True if

f, g agree on Cantor, and equalC(f)(g) = False otherwise.
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Berger’s functional

berger :: (Baire -> Bool) -> Baire
berger p = if p(0 : berger(\a -> p(0 : a)))

then 0 : berger(\a -> p(0 : a))
else 1 : berger(\a -> p(1 : a))

Theorem. This satisfies the above specification.

Proof. See board discussion.
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Back to finite elements

The proof of the above correctness result relies on finite elements.

Want notion of finite element for other domains, e.g. function

spaces.

This leads to interesting and useful proof principles.
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Finite elements in general

Let D be a poset with joins of ascending sequences.

Definition. b ∈ D is called finite if whenever b v
⊔

i xi for some

ascending sequence xi, there there is xi such that already b v xi.

Definition. D is called ω-algebraic if (1) it has countably many

finite elements and (2) every element of D is the join of an

ascending sequence of finite elements.
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Examples

For D = {0, 1}∗ ∪ {0, 1}ω ordered by prefix, the finite elements in

this abstract sense are the finite elements in the concrete sense.

Hence this domain is ω-algebraic.
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Examples

Let N be N ∪ {⊥} ordered by x v y iff x = ⊥ or x = y.

(Bottom is minimal, natural numbers are maximal.)

This is called the flat domain of natural numbers.

This is trivially algebraic: all elements are finite.
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Examples

Let D = (N → N ).

Exercise. The elements of D are precisely the monotone functions.

(Continuity trivializes.)

The following elements of D are finite:

1. The constant functions.

2. The functions f ∈ D such that the set {n ∈ N | f(n) 6= ⊥}

has finite cardinality.

Deduce that this domain is algebraic.
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Functions of finite character

Let D and E be algebraic.

Definition. f ∈ (D → E) is of finite character if

whenever c v f(x) for c ∈ E finite and any x ∈ D,

there is b v x finite such that already c v f(b).
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Characterization of continuity

Let D and E be algebraic.

Theorem. For f : D → E monotone, TFAE:

1. f is of finite character.

2. f is continuous.
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Algebraic producs

The product of two algebraic domains is algebraic.

Exercise. Show that (x, y) ∈ D × E is finite iff x and y are finite.
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Algebraic function spaces

It is not the case that if D and E are algebraic then so is (D → E).

However, under additional assumptions on D and E, the

conclusion holds.

Definition. A Scott domain is a poset that has

1. joins of ascending sequences,

2. a least element,

3. joins of upper bounded finite sets.

Examples. All domains we have seen so far are Scott domains.
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Scott domains form a cartesian closed category

It is enough to show that if D and E are Scott domains then so

are (D × E) and (D → E).

Exercise. Do the D × E case yourself.
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Function spaces of Scott domains

I may add a slide here. If not I’ll use the board.
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The language PCF (Streicher’s book version)

Γ,x : σ,∆`x : σ

Γ,x : σ `M : τ

Γ`λx.M : σ→τ

Γ`M : σ→τ Γ`N : σ

Γ`MN : τ

Γ` zero : nat
Γ`M : nat

Γ` succM : nat
Γ`M : nat

Γ` predM : nat

Γ`L : nat Γ`M : nat Γ`N : nat
Γ` ifL thenM elseN : nat

Γ`M : σ→σ

Γ` YM : σ
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Big-step style operational semantics

x ⇓ x λx.M ⇓ λx.M

M ⇓ λx.L L[N/x] ⇓ V

MN ⇓ V

M(YM) ⇓ V

YM ⇓ V
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Big-step style operational semantics

For n ∈ N, write n = succ n(zero).

0 ⇓ 0
M ⇓ n

succM ⇓ n + 1
M ⇓ 0

predM ⇓ 0
M ⇓ n + 1
predM ⇓ n

L ⇓ 0 M ⇓ V

ifL thenM elseN ⇓ V

L ⇓ n + 1 N ⇓ V

ifL thenM elseN ⇓ V
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The Scott model of PCF

This denotational semantics associates

to each type σ,

a domain Dσ = JσK, and

to each term x1 : σ1, . . . , xn : σn `M : τ ,

a continuous function JMK : Jσ1K× · · · × JσnK → JτK.
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Interpretation of types

By induction on types:

Dnat = N⊥ Dσ→τ = (Dσ → Dτ)
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Interpretation of terms

On the above domains, define

⊥− 1 = ⊥, 0− 1 = 0, ⊥+ 1 = ⊥,

if ⊥ thenx else y = ⊥,

if 0 then x else y = x,

if n thenx else y = y for n 6= ⊥ positive.

This gives continuous functions

(— + 1): N⊥→ N⊥ (—− 1) : N⊥→ N⊥
(if — then— else —) : N⊥ × N⊥ × N⊥→ N⊥
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Interpretation of terms

JΓ` zeroK(~d) = 0

JΓ` succMK(~d) = JΓ`MK(~d) + 1

JΓ` predMK(~d) = JΓ`MK(~d)− 1

JΓ` ifL thenM elseNK(~d) =
if JΓ`LK(~d) then JΓ`MK(~d) else JΓ`NK(~d)
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Interpretation of terms

Jx1 : σ1, . . . , xn : σn `xiK(d1, . . . , dn) = di

JΓ`λx.M : σ→τK = JΓ,x : σ `M : τK

JΓ`MNK(~d) = JΓ`MK(~d)
(
JΓ`NK(~d)

)
JΓ` YMK(~d) = fix

(
JΓ`MK(~d)

)
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Computational adequacy

Theorem. For every term M of ground type with no free variables,

and every n ∈ N,

JMK = n ⇐⇒ M ⇓ n.

(Hence if JMK = ⊥ then there is no n such that M ⇓ n.)

Proof. See Chapter 4 of Streicher’s book.
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The logic LCF

The following principles are validated by the Scott model:

1. M vσ→τ M ′ ∧N vσ N ′ =⇒ MN vτ M ′N ′

1’. M =σ→τ M ′ ∧N =σ N ′ =⇒ MN =τ M ′N ′

2. λx.M vσ→τ λx.M ′ =⇒ ∀x : σ.M v M ′.

2’. λx.M =σ→τ λx.M ′ =⇒ ∀x : σ.M = M ′.

3. (λx.M)N =τ M [N/x]

4. λx : σ.Mx = M provided x is not free in M .
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The logic LCF — recursion principles

5. YM = M(YM).

6. ∀x : σ.Mx v x =⇒ YM v x.

7. P (⊥) ∧ (∀x : σP (x) =⇒ P (Mx)) =⇒ P (YM).

For (7) we require that

x is not free in M and

P (x) is a predicate built from atomic formulas using

∀,∧,∨ and A =⇒ (−) where A is an arbitrary formula

without free occurrences of x.
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Operational equivalence

A.k.a. contextual equivalence, observational equivalence.

Two terms of higher type are equivalent if they produce the same

answer when put in any context of ground type.

M =op N iff for all ground contexts C[−],
C[M ] ⇓ n ⇐⇒ C[N ] ⇓ n.

Operational preorder:

M vop N iff for all ground contexts C[−],
C[M ] ⇓ n =⇒ C[N ] ⇓ n.
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Failure of full abstraction of the Scott model

Proposition M = N implies M =op N .

However, there are M =op N with M 6= N .

I’ll write the counter-example in Haskell.
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Counter-example to full abstraction (Plotkin 1977)

testpor :: Int -> (Bool -> Bool -> Bool) -> Int

testpor n f = if (not (f False False)) &&
(f bot True) &&
(f True bot)

then n
else bot

Now testpor 0 =op testpor 1 but testpor 0 6= testpor 1 in Scott’s

model.
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Rescuing full abstraction

Parallel-or is not definable in PCF: add it!

Then all finite elements become definable.

This implies full abstraction.

(So operational equivalence changes when you add parallel-or.)
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Universality (Plotkin 1977)

An element (or function!) is computable iff it is the join of an r.e.

ascending sequence of finite elements.

There is a computable function ∃ : (N⊥→ B⊥) → B⊥ which is not

PCF definable.

∃(p) = False if p(⊥) = False,

∃(p) = True if p(n) = True for some n ∈ B.

Theorem. PCF extended with parallel-or and exists is universal.
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Universality (Normann 1998)

Theorem. Every total computable functional is PCF definable.
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Recursive types

Domain equations. Language FPC. (Much closer to Haskell.)

Similar programme has been developed.
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