Topology, computation, monads, games and proofs

Martin Escardd

% of this talk is joint work with Paulo Oliva from Queen Mary, London.

MFPS 2010, OTTAWA, MAY 6-10, 2010

Contents plan

|. Topology in computation.

Exhaustive search.

I[I. The selection monad.

Selection functions for generalized quantifiers.

[Il. Game theory.

Optimal plays and strategies.

V. Proof theory.

Computational extraction of witnesses from classical proofs.

Unifying concept: selection functions for quantifiers

A certain countable product of selection functions implements:

|. Topology in computation: Tychonoff theorem.
Il. The selection monad: Strength.
[1l. Game theory: Optimal plays and strategies.

V. Proof theory: Double-negation shift. Bar recursion.

Time plan

Each part has half of the time allocated to the previous part.

Even though it probably deserves twice as much.

|. Topology and computation.

Old theorem. A set of natural numbers is exhaustively searchable iff it is finite.

Intuition: How could one possibly check infinitely many cases in finite time?

Proof: Removed from this intuition (Halting problem, diagonalization).

Common wisdom

A set of whatever-you-can-think-of is exhaustively searchable iff it is finite.

E.g. types in
1. System T, PCF

2. FPC, ML, Haskell etc.

Can’t always trust common wisdom

E.g. The total elements of Nat — Bool are exhaustively searchable.

Many other examples.

Corollary

The type (Nat — Bool) — Nat has decidable equality.

Proof. Given f,g: (Nat — Bool) — Nat.

Check whether f(a) = g(a) for every a: Nat — Bool.

Exhaustible set

A set K C X is exhaustible iff there is an an algorithm s.t.

1. Input: p: X — Bool decidable.
2. Output: True or False.

3. Specification: output True iff 3k € K.p(k) = True.

The algorithm has higher type (X — Bool) — Bool.

Searchable set

A set K C X is searchable iff there is an an algorithm s.t.

1. Input: p: X — Bool decidable.
2. Output: Either fail or some k € K.

3. Specification: output fail if Vk € K.p(k) = False,
or else k € K with p(k) = True.

The algorithm has higher type (X — Bool) — 1+ X.

Searchable = exhaustible.

This is so by definition.

Of course

10

Searchable set, slightly different notion and formulation

A set K C X is searchable iff there is an an algorithm s.t.

1. Input: p: X — Bool decidable.
2. QOutput: k € K.

3. Specification: If dx € K.p(x) = True then p(k) = True.
Otherwise p(k) = False, of course.

Only difference: previous accounts for the empty set, this doesn't.

The algorithm has higher type (X — Bool) — X.

11

Still

Searchable = exhaustible.

Given the potential example k£ € K,

check whether p(k) = True or p(k) = False.

Better: the answer to the exhaustion procedure is just p(k).

12

Summary of the two notions

KCX

Exhaustible: algorithm Jk: (X — Bool) — Bool.

The boolean existential quantifier is computable.

Searchable: algorithm e : (X — Bool) — X.

The set K has a computable a selection function.

Derived functions:

Ix(p) = plek(p)).

Vi (p) = 2Ix(-op).

13

Theorem (LMCS’2008, ENTCS’2004)

Exhaustible sets (hence searchable sets) are topologically compact.

Types with decidable equality are topologically discrete.

14

First examples and counter-examples

. A set of natural numbers is compact iff it is finite.

. The maximal elements of the lazy natural numbers are searchable.

(Which amount to the one-point compactification of discrete natural numbers.)
. The set of all sequences av: Nat — Nat is not searchable.

. The set of sequences o: Nat — Nat such that a; < 17 is searchable.

. The set of sequences o: Nat — Nat such that a; < k is searchable.

. The set of sequences a.: Nat — Nat such that a; < (3 is searchable, for any
given sequence 3: Nat — Nat.

15

More examples (LMCS’2008)

Consider the types defined by the following grammar:

compact ::= 1| compact + compact | compact x compact | discrete — compact,
discrete ::= 1| Nat | discrete + discrete | discrete x discrete | compact — discrete .
Theorem.

1. Compact types are searchable.

2. Discrete types have decidable equality of total elements.

Eg (Nat =1+1)—Nat) -1+1+1) - ((Nat = 1+1+4+1+1) — Nat)
has decidable equality.

16

Dictionary between topology and computation

Open set. Semi-decidable set.

Closed and open set. Decidable set.
Continuous map. Computable function.
Compact set. Exhaustively searchable set.
Discrete space. Type with decidable equality.

Hausdorff space. Space with semi-decidable apartness.

Take a theorem in topology,

apply the dictionary,

get a theorem in computability theory.

Unfortunately you have to come up with a new proof.

17

Theorems (LMCS’2008)

. The non-empty exhaustible sets are the computable images of the Cantor space
(Nat — Bool).

. Searchable sets are closed under computable images.

. Hence hence the non-empty exhaustible sets are searchable.

(Given yes/no algorithm, get an algorithm for witnesses.)

. Searchable sets are closed under countable products.

(Tychonoff theorem.)
. And under intersections with decidable sets.

. They are retracts of the types where they live.

18

Is this feasible?

| have some counter-intuitively fast examples to show you.

19

Il. Selection functions for generalized quantifiers.

Pause to look at some motivating examples.

20

Mean-value theorem

Iy f=f(a).

The mean value i1s attained.

If you travelled from London to Ottawa and your journey took 12 hours, then at
some point you were travelling at 5379/12 ~ 440km /h.

21

Maximum-value theorem

supy [= f(a).

The maximum value is attained.

22

Universal-value theorem

Vp = p(a).

The universal value is attained.

Known as Drinker paradox:

In every pub there is a person a such that everybody drinks iff a drinks.

23

Existential-value theorem

Ip = p(a).

The existential value is attained.

Another version of the Drinker paradox:

In every pub there is a person a such somebody drinks iff a drinks.

24

General pattern

¢(p) = p(a).

R type of results.

p: X — R.

¢: (X - R) — R. Lives in the continuation monad.

a € X.

We want to find a from given p, as a = (p).

e: (X = R)— X. Lives in the selection monad.

25

Continuation monad

KX =((X — R) — R).

Well known, with many theoretical and practical uses.

26

Selection monad

JX=((X—R)— X).

Images of searchable sets are searchable:

f: X—-Y

Jf: JX — JY, Jfe=Xqg.f(e(Az.f(q(x)).

Singletons are searchable:

n: X — JX, n(x) = Ap.x.

The union of a searchable set of searchable sets is searchable:

p: JIX — JX, p(E) = Ap.E(rep(e(p)))(p)-

27

Monad morphism J — K
e — ¢ where ¢(p) = p(e(p)).

We write ¢ = €.

Then g(p) = p(e(p)).

Definition.

A quantifier ¢ € KX is attainable if it has a selection function € € JX:

¢ =E.

28

J and K are strong

The strengths
X XTY -T(X xY).
extend to

@: TX xTY - T(X xY).

NB. The monads are not commutative.
The extension of the co-strengths TX xY — T(X xY)

give different maps @": TX xTY — T(X xY).

29

Terminology and examples

. : KXXxKY - K(X xY).
Product of quantifiers.
(Vx ® dy)(p) =V € X3y € Yop(x,y).
dx ® Jy = dxxv-
2. ®@: JX xJY —- J(X xY).
Product of selection functions.
(e ®6)(p) = (a,b(a))
where b(z) = d(A\y.p(x,y),
a=¢e(Ax.p(x,b(x)).

30

Theorem

Attainable quantifiers are closed under finite products.

Proof.

The monad morphism gives

EROI=cR 4.

Hence if ¢ = ¢ and 7:3,

then g ® v = ® 4,

and so € ® J is a selection function for ¢ ® ~.

31

Example 1

Binary Tychonoff theorem.

The product of two searchable sets is searchable.

Proof.
e € JX selection function for dx € KX with K C X.

0 € JY selection function for 97 € KY with L C Y.

e ® 0 selection function for 4 ® 4 = dx 1 € K(X xY)).

32

Example 2

In every pub there are a man a and a woman b such that

every man buys a drink to some woman iff a buys a drink to b.

Proof.

This amounts to (Vz € X.3y € Y.p(x,y)) = p(a,b).
By the Drinker paradoxes, the quantifiers Vx and dy
have selection functions A and FE.

By the above theorem, the quantifier Vx ® dy has a selection function A® E.

Hence we can take (a,b) = (A ® E)(p).

33

Countable Tychonoff theorem for searchable sets

Arbitrary products of compact sets are compact.

Countable products of searchable sets are searchable.

Countable “strength”:

characterized by

R ci =0 ® Q; it

NB. This exists only in particular categories.

34

l1l. Game theory.
Products of selection functions calculate

1. optimal plays, and

2. optimal strategies.

35

Example 1

. Two-person game that finishes after exactly n moves.

. Eloise starts and alternates playing with Abelard. One of them wins.
. ¢-th move is an element of the set Xj.

. A predicate p: H?:_()l X,; — Bool tells whether Eloise wins.

. Eloise can win iff

drg € Xog Va1 € Xy dxo e X9 Vzze Xs-- -p(:l?o, e ,xn_l).

N @2 = Ix,, and P21 = Vx,,, . this amounts to (Q),_; ¢:) ().

36

Example 2

. Two-person game that finishes after exactly n moves.

. Eloise starts and alternates playing with Abelard. Lose, draw, win.
. i-th move is an element of the set X;.

. A predicate p: H?:_()l X; —{-1,0,1}.

. The optimal outcome of the game is

sup inf sup inf -+ plzo,...,Tn_1).
ro€Xy TIE€EX1 goeX, T3EX3

.M ¢2i = supy,, and ¢oi11 = infy,, ,, this again amounts to (Q);_; ¢:) ().

37

Sequential game of length n

Xo,...,X,_1 sets of possible moves at rounds 0,...,n — 1.

n—1

p: [[,._y Xi — R outcome (or pay-off) function.

oo € KXo, ..., ¢p—1 € KX, _1 quantifiers for each round.

We don't stipulate who plays at each round.

This is implicit in the choice of quantifiers.

38

Subgame
Determined by a partial play a = (ag,...,a,_1) € Hf;ol X; for k < n:

(Xis Pa, ¢i).

Here po: [17=. Xi; — R is defined by

Pa(Thy ooy Xpn_1) =pagy -+, A1, Thy -+, Tp_1),

Like the original game but starts at the position determined by the moves a.

39

Optimal outcomes and plays

1. The optimal outcome of the game is w = (@?:_01 gbi) (p).
2. Aplay (ag,...,a,—_1) is optimal if

w() — w(a’O) — w<a07a1) — w(a’Oaalaa2) - = w(a’Oaala"'aan—l)'

All players have played as best as they could.

40

The optimal outcome for tic-tac-toe is a draw.

An optimal play is
X

Example

X X | X
O O

X | X X1 X]0
O OO0

X X

X | X X|X|O

OO OO0 | X

X 10 X110 | X

41

Optimal moves and strategies

1. A move ap € X is optimal for a subgame (ag,...,ar_1) € Hf:_ol X; if it
doesn’t change the optimal outcome.
w(a()r"aak—l) - w(a()a-":ak—l)ak)'
2. A strategy is a family of functions,
k—1

nexty : H X; — Xg.
1=0

3. A strategy is optimal if the move nexty(a) is optimal for every partial play a.

42

Policy functions for the game

A policy is a sequence of selection functions ¢;: (X; — R) — X, for the game
quantifiers.

E.g., if the policy of the player is to maximize the payoff, then (p) is a point
where p attains its maximum value.

43

Calculating optimal plays and strategies
Theorem. Let (X;,p, ¢;) be a game with policy functions &;.

1. An optimal play is given by
n—1
. (@))
i=k

2. An optimal strategy is given by

nexty(a) = <<® 52-) (pa)> .

44

Nash equilibria for sequential games

Calculated as in the theorem, with R = R™ and ¢; = sup.

(Simultaneous games are a completely different story.)

45

Dependent product of selection functions

Sometimes the allowed moves depend on the played moves at previous rounds.

Consider “dependent product” TX x (X —TY) —-T(X xY).

Eg., (3z € X.Vy € Yo.p(x,y)) = (¢ ®7)(p) for ¢ = Ix and y(z) = Vy,.

Iterating this (in)finitely often, we get

1] (ka —>TXZ-> — T (HX)

i \k<i
Optimal plays and strategies calculated using this.

46

Let’s run an example in the computer

If there is enough time left.

47

IV. Proof theory.

Algebras of the monad J:
JA — A.
(A—-R)— A) — A.

Propositions that satisfy Peirce's Law.

Get proof translation that eliminates Peirce's Law directly.

Connection with the double-negation translation via the morphism J — K.

48

Double negation shift

Vi € No-—A(1) = Vi € N.A(4).

Used by Spector (1962) to interpret the classical axiom of countable choice.

Can be written as a K-shift:

Vie NKA(1) = KVie N.A(2).

Non-intuitionistic principle, realized by Spector bar recursion.

49

J-shift

The countable product functional @: [[. JX; — J[]. X; realizes the J-shift

Vie NNJA(1) = JVi € N.A(3).

More general than the K-shift.

Q) is yet another form of bar recursion.

50

Unifying concept: selection functions for quantifiers

|. Topology in computation.

Exhaustive search.

I[I. The selection monad.

Selection functions for generalized quantifiers.

[Il. Game theory.

Optimal plays and strategies.

V. Proof theory.

Computational extraction of witnesses from classical proofs.

51

Unifying concept: selection functions for quantifiers

The product of selection functions @: [[, JX; — J]], X; gives:

|. Topology in computation: Tychonoff theorem.
Il. The selection monad: Strength.
[1l. Game theory: Optimal plays and strategies.

V. Proof theory: Generalized double-negation shift, bar recursion.

52

Unifying concept: selection functions for quantifiers

The product of selection functions @: [[, JX; — J]], X; gives:

|. Topology in computation: Tychonoff theorem.
Il. The selection monad: Strength.
[1l. Game theory: Optimal plays and strategies.

V. Proof theory: Generalized double-negation shift, bar recursion.

Thanks!

53

References

. MHE. Synthetic topology of data types and classical spaces. ENTCS'2004.

. MHE. Infinite sets that admit fast exhaustive search. LICS'2007.

. MHE. Exhaustible sets in higher-type computation. LMCS'2008.

. MHE. Computability of continuous solutions of higher-type equations, LNCS'2009.

. MHE & PO. Selection functions, bar recursion, and backward induction, MSCS'2010.

. MHE & PO. Searchable Sets, Dubuc-Penon Compactness, Omniscience Principles,
and the Drinker Paradox. CiE'2010.

. MHE & PO. The Peirce translation and the double negation shift. LNCS'2010.

. MHE & PO. Computational interpretations of analysis via products of selection functions,

LNCS'2010.

54

Links

http://math.andrej.com/2007/09/28/seemingly-impossible-functional-programs/
http://math.andrej.com/2008/11/21/a-haskell-monad-for-infinite-search-in-finite-time/
http://www.cs.bham.ac.uk/~mhe/papers/index.html

Maybe add links to the Haskell programs here.

55

http://math.andrej.com/2007/09/28/seemingly-impossible-functional-programs/
http://math.andrej.com/2008/11/21/a-haskell-monad-for-infinite-search-in-finite-time/
http://www.cs.bham.ac.uk/~mhe/papers/index.html

