Semi-decidability of may, must and probabilistic testing in a higher-type setting

Martín Escardó

School of Computer Science, Birmingham University, UK

MFPS 2009, Oxford, Friday 3rd April 2009

KORK ERKER ADE YOUR

Theorem

May, must and probabilistic testing are semi-decidable, in a fairly general setting including higher-types.

Observations:

- **1** Must testing is perhaps surprising: It involves universal quantification over an infinite set.
- 2 The other two involve existential quantification and integration.

KORK ERKER ADE YOUR

Can reduce to quantification and integration over the Cantor space.

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

This is the space of infinite sequences of binary digits.

Can algorithmically quantify and integrate over the Cantor space.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Quantification amounts exhaustive search in finite time.

- **4** A programming language for non-determinism and probability.
- ² Logical types. For results of semi-decisions.
- **3** An executable program logic.
- **4** Operational semantics of the executable logic. Algorithms.
- **•** Denotational semantics of the executable logic. Correctness.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Brief discussion of effects

ML way.

- **1** All effects are possible at all types.
- ² Come up with a monad that combines all effects.
- **3** The semantics is in the Kleisli category of that big monad.

Haskell way.

- **1** Explicitly define various monads as type constructors.
- ² For each effect, or maybe for each combination of a set of effects.
- **3** Several monads are used in the same program.
- ⁴ The programmer decides which monads he wants for each sub-program.

KORK ERKER ADE YOUR

We develop our results in the Haskell way.

A programming language for non-determinism and probability

Ground types:

 $\gamma :=$ Bool | Nat

Powertype constructors:

 $F ::= H | S | P | V$

- **1 Hoare, Smyth, Plotkin, Probabilistic.**
- 2 May, must, may/must, on average.
- **3** Angelic, demonic, human.

Types:

$$
\sigma, \tau ::= \gamma \mid \sigma \times \tau \mid \sigma \to \tau \mid F\sigma
$$

KORK ERKER ADE YOUR

Cartesian closed language.

The type

$\sigma \times \tau \to V \tau$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

can be used to code labeled Markov processes with:

- **1** label space $A = \sigma$,
- 2 state space $S = \tau$, and
- **3** transition function $t : A \times S \rightarrow VS$.

For the sublanguage over the PCF types

$$
\sigma,\tau ::= \gamma \mid \sigma \times \tau \mid \sigma \rightarrow \tau
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

we take the PCF terms.

(Conditional, arithmetic, λ -calculus, fixed-point recursion.)

So no non-determinism or probability.

For each type σ and each type constructor $F \in \{H, S, P\}$, we have a constant

$$
(\mathcal{Q}^{\sigma}): \mathit{F}\sigma \times \mathit{F}\sigma \rightarrow \mathit{F}\sigma,
$$

Idea. The term

this \otimes that

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

non-deterministically evaluates to this or that, angelically or demonically.

For each type σ , we have an infix constant

 (\oplus^{σ}) : $V \sigma \times V \sigma \rightarrow V \sigma$.

Idea. The term

this ⊕ that

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

non-deterministically evaluates to this or that, with equal probability.

Functor. If $f: \sigma \rightarrow \tau$ is a term, then so is

 $Ff: F\sigma \rightarrow F\tau$.

Unit. For each type σ , we have a term

 $\eta_{\mathsf{F}}^{\sigma} \colon \sigma \to \mathsf{F}\sigma.$

Multiplication. For each type σ , we have a constant

 μ_F^{σ} : FF $\sigma \to F\sigma$.

KORK ERKER ADE YOUR

Strength. Left to the audience.

We could have worked with monads as Kleisli triples (as in Haskell).

This makes no difference, but our choice is presentationally more convenient.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

```
\eta(\lambda x.0) \otimes \eta(\lambda x.1): F(\sigma \rightarrow \text{Nat})\lambda x.\eta(0) \otimes \eta(1): \sigma \to FNat
```
Remark. If we apply the ML way to a call-by-name language, the terms

 $(\lambda x.0) \otimes (\lambda x.1)$

and

 λ x.(0 \otimes 1)

KORK ERKER ADE YOUR

behave in the same way!

Example: randomly choose an infinite sequence of booleans with uniform distribution

 $\text{Cantor} = (\text{Nat} \rightarrow \text{Bool}).$

cons: Bool \rightarrow Cantor \rightarrow Cantor.

prefix: $Bool \rightarrow V Cantor \rightarrow V Cantor$.

```
prefix p = V(\cos p).
```
random: V Cantor.

random $=$ (prefix False random) \oplus (prefix True random).

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

K ロ X イロ X K ミ X K ミ X ミ → S V C Y C

Think of elements of the Cantor space as "schedulers".

Can decorate the operational semantics with schedulers,

 $M \Downarrow^s v,$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

so that

 $M \Downarrow v$ iff there is some s with $M \Downarrow^s v$.

M must converge \iff for every s there is v with $M \Downarrow^s v$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

M may converge \iff there are s and v with $M \Downarrow^s v$.

Our approach is based on this idea. But we implement it in a different way. Term formation rules for a Sierpinski type S:

- $\mathbf{\Omega}$ T: S is a term.
- **2** If M: S and N: σ are terms then (if M then N): σ is a term.
- **3** If $M, N: S$ are terms then so is $M \vee N: S$.

The only value (or canonical form) of type S is \top .

 $M \Downarrow \top$ $N \Downarrow V$ if M then $N \Downarrow V$ $M \Downarrow \top$ $M \vee N \Downarrow \top$ $\frac{N\Downarrow\top}{M\vee N\Downarrow\top}.$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

If M is a closed term of ground type and v is a value then

 $\llbracket M \rrbracket = v$ iff $M \Downarrow v$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- **1** Interpretated as the cpo $([0, 1], \leq)$.
- 2 Computations of terms $M: I$ allow to semi-decide the condition $p < M$ with p rational.

KORK ERKER ADE YOUR

3 But not the conditions $M = p$ or $M < p$ in general.

- **1** Interpretated as the cpo $([0, 1], \leq)$.
- 2 Computations of terms $M: I$ allow to semi-decide the condition $p < M$ with p rational.
- **3** But not the conditions $M = p$ or $M < p$ in general.
- ⁴ Naturally regarded as a sub-dcpo of the unit-interval domain.

KORK ERKER ADE YOUR

5 Think of $x \in I$ as the interval $[x, 1]$.

- **1** Interpretated as the cpo $([0, 1], \leq)$.
- 2 Computations of terms $M: I$ allow to semi-decide the condition $p < M$ with p rational.
- **3** But not the conditions $M = p$ or $M < p$ in general.
- ⁴ Naturally regarded as a sub-dcpo of the unit-interval domain.

KORKAR KERKER E VOOR

- **5** Think of $x \in I$ as the interval $[x, 1]$.
- We take the primitive operations those for Real PCF, restricted to such intervals.
- **1** Arithmetic functions, $p < (-)$: I → S and pif.
- 8 Same operational rules.

- **1** Interpretated as the cpo $([0, 1], \leq)$.
- 2 Computations of terms $M: I$ allow to semi-decide the condition $p < M$ with p rational.
- **3** But not the conditions $M = p$ or $M < p$ in general.
- ⁴ Naturally regarded as a sub-dcpo of the unit-interval domain.

KORKAR KERKER E VOOR

- **5** Think of $x \in I$ as the interval $[x, 1]$.
- We take the primitive operations those for Real PCF, restricted to such intervals.
- **1** Arithmetic functions, $p < (-)$: I → S and pif.
- 8 Same operational rules.

$\llbracket M \rrbracket = x$ iff for every rational number p, we have that

 $p < x \iff (p < M) \Downarrow \top$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

There are programs:

- $\bullet x \oplus y = (x + y)/2$, min, max, ...
- $\textcircled{2} \exists, \forall: (\text{Cantor} \rightarrow \text{S}) \rightarrow \text{S}.$
- $\textbf{S} \text{ } \int \colon (\texttt{Cantor} \rightarrow \texttt{I}) \rightarrow \texttt{I}.$

Based on papers:

- **1 PCF** extended with real numbers, 1996.
- **2** Integration in Real PCF (with Edalat), 2000.
- **3** Synthetic topology of data types and classical spaces, 2004.

KORK ERKER ADE YOUR

⁴ Exhaustible sets in higher-computation, 2008.

$$
\forall (p) = p(\text{if } \forall (\lambda s. p(\text{cons False } s)) \land \forall (\lambda s. p(\text{cons True } s)) \text{ then } c),
$$
\n
$$
\int f = \max \left(f(\bot), \int \lambda s. f(\text{cons False } s) \oplus \int \lambda s. f(\text{cons True } s) \right).
$$

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q C

 $\exists (p) = p(1) \vee (\exists (\lambda s. p(\text{cons False} s)) \vee \exists (\lambda s. p(\text{cons True} s)))$.

We extend the programming language $PCF + S + I$ with modal operators.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

We get an executable program logic, MMP.

The S-valued terms are characteristic functions of open sets:

 $\mathcal{O}\sigma = (\sigma \rightarrow S).$

$$
\begin{aligned}\n\diamondsuit_F^{\sigma}: \mathcal{O}\,\sigma \to \mathcal{O}\,F\,\sigma, &\text{for } F \in \{\text{H}, \text{P}\}, \\
\Box_F^{\sigma}: \mathcal{O}\,\sigma \to \mathcal{O}\,F\,\sigma, &\text{for } F \in \{\text{S}, \text{P}\}.\n\end{aligned}
$$

Idea. If $u: \mathcal{O}\sigma$ and $N: \mathbb{P}\sigma$,

 $\Diamond(u)(N) = \top \iff u(x) = \top$ for some outcome x of a run of N and

 $\square(u)(N) = \top \iff u(x) = \top$ for all outcomes x of runs of N.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- \bullet Want to semi-decide whether $n: F$ Nat must be prime.
- 2 Write a semi-decision term $\text{prime}: \text{Nat} \rightarrow \text{S}.$
- **3** Run, in the executable logic, the ground term \Box prime *n*.

Of course, on can also semi-decide whether *n* must be non-prime.

However:

- \bullet It doesn't follow that primeness of all outcomes of n is decidable.
- 2 If n has at least one non-divergent run, then both must tests diverge.

Example

Recursively define a term $f: Nat \rightarrow P Nat$ by

 $f(n) = \eta(n) \otimes f(n+1)$,

and let converge: Nat \rightarrow S be a term such that

converge $(n) = \top \iff n \neq \bot$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Then we intend that

 \Diamond converge $(f(0)) = \top$

and that

 \Box converge $(f(0)) = \bot$

but

 \Box converge $(\eta(0) \otimes \eta(1)) = \top$.

Taking converge: $S \rightarrow S$ as the identity, the function

 $(V): S \times S \rightarrow S$

is characterized by the equation

 $(p \vee q) = \Diamond$ converge $(\eta(p) \otimes \eta(q))$.

However, it cannot be defined from must testing.

Notice that $(p \wedge q) = \Box$ converge $(\eta(p) \otimes \eta(q))$.

Define a type of expectations:

$$
\mathcal{E}\,\sigma=(\sigma\to\mathrm{I}).
$$

We add a constant to the logic:

$$
\bigcirc^{\sigma}:\; \mathcal{E} \;\sigma \to \mathcal{E}\; V \;\sigma.
$$

For a $\{0, 1\}$ -valued term $u: \mathcal{E} \sigma$ and a term $N: V \sigma$,

 \bigcirc (u)(N): I is the probability that u holds for outcomes of runs of N.

KORK ERKER ADE YOUR

Recursively define a term $g: Nat \rightarrow V$ Nat by

 $g(n) = \eta(n) \oplus g(n+1)$,

Then we intend that

 \bigcirc converge $(g(0)) = 1$

and

```
\bigcirc converge<sub>n</sub>(g(0)) = 2^{-n-1}
```
where $\mathop{\mathrm{converge}}\nolimits_n\colon \mathtt{Nat} \to \mathtt{S}$ is a term such that

converge_n $(x) = \top \iff x = n$.

KORK ERKER ADE YOUR

Parallel-convergence is definable from probabilistic testing

$(p \vee q) = 0 < \bigcirc$ converge $(\eta(p) \oplus \eta(q))$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Define a term prefix: $I \rightarrow VI \rightarrow VI$ by

prefix $x = V(\lambda y.x \oplus y)$,

Define random: V I by

random $=$ (prefix 0 random) \oplus (prefix 1 random).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

For example $\bigcap (\lambda x.p < x)$ random $= 1 - p$ for any $p \in I$.

Recall that $\mathcal{O}\sigma = (\sigma \rightarrow S)$

 $\Diamond: \mathcal{O} \sigma \rightarrow \mathcal{O} H \sigma$

Define

 \exists : H $\sigma \rightarrow ((\sigma \rightarrow S) \rightarrow S)$

as

 $\exists (C)(u) = \diamondsuit(u)(C).$

The idea is that this stands for

 $\exists x \in C.u(x)$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Similarly, from the must testing operator

 $\square: \mathcal{O}\sigma \to \mathcal{O}\,\mathbf{S}\,\sigma$,

we get a term

$$
\forall: S \sigma \rightarrow ((\sigma \rightarrow S) \rightarrow S),
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The Ploktin powertype has both quantifiers.

Recalling that $\mathcal{E} \sigma = (\sigma \to \mathbb{I})$, from the probabilistic testing operator

 $\bigcap: \mathcal{E} \sigma \rightarrow \mathcal{E} \nu \sigma$

we get a term

$$
\int\colon\operatorname{{V}}\sigma\to((\sigma\to\operatorname{\mathtt{I}})\to\operatorname{\mathtt{I}})
$$

defined by

$$
\int_{\nu} u = \bigcirc(u)(\nu).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

where $\nu: V \sigma$ and $\mu: \sigma \rightarrow I$.

Let $(\sigma, f_1, \ldots, f_n, p_1, \ldots, p_n)$ be an IFS with probabilities.

Its invariant measure ν : $V\sigma$ can be defined as

 $\nu =$ weighted-choice $(p_1, \ldots, p_n)(V(f_1)(\nu), \ldots, V(f_n)(\nu)),$

Scriven (MFPS 2008) developed a PCF program for computing integrals of functions $u: \sigma \to I$ with respect to the invariant measure.

Here we get the alternative algorithm $\int_\nu u = \bigcirc(u)(\nu)$ in the program logic MMP instead.

KORKAR KERKER E VOOR

Operational semantics of the executable logic MMP

- By compositional compilation into its deterministic sub-language $PCF + S + I$.
- **2** The translation is the identity on $PCF + S + I$ terms.
- Reduce may, must and probabilistic testing in MMP to quantification and integration in $PCF + S + I$.

This is defined by induction:

$$
\begin{array}{rcl}\n\phi(\gamma) & = & \gamma, \\
\phi(\sigma \times \tau) & = & \phi(\sigma) \times \phi(\tau), \\
\phi(\sigma \to \tau) & = & \phi(\sigma) \to \phi(\tau), \\
\phi(\digamma \sigma) & = & \texttt{Cantor} \to \phi(\sigma).\n\end{array}
$$

Recall that $\text{Cantor} = (\text{Nat} \rightarrow \text{Bool})$.

(Hence the translation is the identity on $PCF + S + Ic$ types.)

 $\phi(x) = x$ $\phi(\lambda x.M) = \lambda x.\phi(M)$ $\phi(MN) = \phi(M)\phi(N)$ $\phi(PCF + S + I \text{ constant}) =$ itself

KORK ERKER ADE YOUR

 ϕ (any fixed-point combinator) = itself

(Hence the translation is the identity on $PCF + S + I$ terms.)

For $\star \in \{\circledcirc, \oplus\}$, we define

$\phi(\star)$ = $\lambda(k_0, k_1) \cdot \lambda s$. if head(s) then $k_0(\text{tail}(s))$ else $k_1(\text{tail}(s))$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Here k_0 and k_1 range over $\phi(F\sigma) =$ Cantor $\rightarrow \phi(\sigma)$.

Typing:

$$
\begin{array}{rcl} \diamondsuit & : & (\sigma \to {\mathtt{S}}) \to ({\sf{F}}\sigma \to {\mathtt{S}}), \\ \phi(\diamondsuit) & : & (\phi(\sigma) \to {\mathtt{S}}) \to ((\mathtt{Cantor} \to \phi(\sigma)) \to {\mathtt{S}}). \end{array}
$$

We define

$$
\phi(\diamondsuit) = \lambda u.\lambda k. \exists s. u(k(s)).
$$

Here

$$
\underbrace{(\phi(\sigma) \to S)}_{u} \to \underbrace{((\text{Cantor} \to \phi(\sigma)) \to S)}_{k}.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

The quantification is over the Cantor space.

Translation of the modal operators: must

Typing:

$$
\begin{array}{rcl} \Box & : & (\sigma \to \mathrm{S}) \to (\digamma \sigma \to \mathrm{S}), \\ & \phi(\Box) & : & (\phi(\sigma) \to \mathrm{S}) \to ((\mathtt{Cantor} \to \phi(\sigma)) \to \mathrm{S}). \end{array}
$$

We define

$$
\phi(\Box) = \lambda u.\lambda k.\forall s.u(k(s)).
$$

Here

$$
\underbrace{(\phi(\sigma) \to S)}_{u} \to \underbrace{((\text{Cantor} \to \phi(\sigma)) \to S)}_{k}.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

The quantification is over the Cantor space.

Translation of the modal operators: probabilistic

Typing:

$$
\begin{array}{rcl} \bigcirc & : & (\sigma \to \mathrm{I}) \to (\mathrm{V} \, \sigma \to \mathrm{I}), \\ \phi(\bigcirc) & : & (\phi(\sigma) \to \mathrm{I}) \to ((\mathtt{Cantor} \to \phi(\sigma)) \to \mathrm{I}). \end{array}
$$

We define

$$
\phi(\bigcirc) = \lambda u.\lambda k. \int u(k(s))s.
$$

Here

$$
\underbrace{(\phi(\sigma) \to \mathrm{I})}_{u} \to \underbrace{((\underline{\mathrm{Cantor}} \to \phi(\sigma)) \to \mathrm{I}).}_{k}
$$

K □ ▶ K @ ▶ K 할 X K 할 X T 할 X 1 9 Q Q *

The integration is over the Cantor space.

Translation of the monad constructions: functor

$$
\phi(Ff) = \lambda k.\lambda s.f(k(s)).
$$

K ロ X イロ X X を X X を X と ミ X の Q Q へ

Translation of the monad constructions: unit

 $\phi(\eta_F) = \lambda x.\lambda s.x.$

We consider PCF terms

evens, odds: Cantor \rightarrow Cantor

that take subsequences at even and odd indices.

Define:

 $\phi(\mu_F) = \lambda k.\lambda s.k(\text{evens}(s))(\text{odds}(s)).$

KORK ERKER ADAM ADA

Translation of the monad constructions: strength

K ロ X イロ X K ミ X K ミ X ミ → S V C Y C

Left as an exercise to the audience.

For MMP terms $M: \sigma$ with $\gamma \neq I$ ground, define

 $M \Downarrow v \iff \phi(M) \Downarrow v.$

As predicted by the audience.

Types:

- \bullet Hoare powertype \mapsto Hoare powerdomain.
- 2 Smyth powertype \mapsto Smyth powerdomain.
- ³ Plotkin powertype \mapsto Plotkin powerdomain.
- \triangle Probabilistic powertype \mapsto probabilistic powerdomain.

Terms:

- **1** These are monads, which have the binary choice operators we need.
- **2** The modal operators correspond to the usual descriptions of the open sets of the powerdomains.
- **3** The probabilistic operator is interpreted by integration.

To establish semi-decidability of may, must and probabilistic testing, we first prove computational adequacy of the model:

Lemma

For any closed MMP-term M of ground type other than I , and all syntactical values v,

 $\llbracket M \rrbracket = \llbracket v \rrbracket \iff M \Downarrow v.$

In particular, for $M: I$ closed and $r \in \mathbb{O}$,

 $r < \llbracket M \rrbracket \iff r < M \Downarrow \top.$

KORK ERKER ADAM ADA

Because the model is already known to be computationally adequate for the deterministic sub-language $PCF + S + I$:

Lemma

Computational adequacy holds if and only if $\llbracket M \rrbracket = \llbracket \phi(M) \rrbracket$ for every closed term M of ground type.

KORK ERKER ADAM ADA

Follows directly from computational adequacy.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

BUT

- **1** For the proof of computational adequacy, we rely on the abstract description of the powerdomains by free algebras.
- ² For the proof of correctness, we rely on the concrete descriptions of the powerdomains:
	- **1** Set of closed sets (Hoare).
	- Set of compact sets (Smyth).
	- **3** Lenses (Plotkin).
	- **•** Continuous valuations with total mass 1 (Probabilistic).
- **3** The abstract and concrete descriptions agree only for special kinds of domains.

KORK ERKER ADAM ADA

Theorem

- **1** For any type σ , may testing on terms of type H σ is semi-decidable.
- **2** For any continuous type σ , must testing on terms of type S σ is semi-decidable.
- **3** For any RSFP type σ , may and must testing on terms of type $P \sigma$ are semi-decidable.
- \bullet For any continuous type σ , probabilistic testing on terms of type $V \sigma$ is semi-decidable.

Remark

- **1** If we hadn't included the probabilistic powertype in our language, we wouldn't have had any of the above difficulties.
- ² May and must testing would be semi-decidable for all types.
- ³ What causes the restrictions is the presence of the probabilistic powertype.
- ⁴ But still the restrictions are not severe in practice.
- ⁵ For example, probabilistic computations on any PCF type of any order have semi-decidable probabilistic testing.

Define:

$$
S ::= \gamma | S \times S | (C \rightarrow S) | H C | S C,
$$

\n
$$
R ::= S | R \times R | (R \rightarrow R) | P R,
$$

\n
$$
C ::= R | C \times C | V C.
$$

By a continuous Scott domain we mean a bounded complete continuous dcpo.

Proposition

- **1** The interpretation of an S type is a continuous Scott domain.
- **2** The interpretation of an R type is an RSFP domain.
- ³ The interpretation of a C type is a continuous dcpo.

Theorem

- **For any type** σ **, may testing on terms of type H** σ is semi-decidable.
- **2** For any continuous type σ , must testing on terms of type S σ is semi-decidable.
- **3** For any RSFP type σ , may and must testing on terms of type $P \sigma$ are semi-decidable.
- \bullet For any continuous type σ , probabilistic testing on terms of type $V\sigma$ is semi-decidable.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

This applies to a large class of (syntactically described) types.