Semi-decidability of _
may, must and probabilistic testing
in a higher-type setting

Martin Escardé

School of Computer Science, Birmingham University, UK

MFPS 2009, Oxford, Friday 3rd April 2009

Main result

May, must and probabilistic testing are semi-decidable,
in a fairly general setting including higher-types.

Observations:

© Must testing is perhaps surprising:
It involves universal quantification over an infinite set.

@ The other two involve existential quantification and
integration.

Ingredient 1

Can reduce to quantification and integration over the Cantor space.

This is the space of infinite sequences of binary digits.

Ingredient 2

Can algorithmically quantify and integrate over the Cantor space.

Quantification amounts exhaustive search in finite time.

Organization

@ A programming language for non-determinism and probability.
@ Logical types. For results of semi-decisions.

© An executable program logic.

@ Operational semantics of the executable logic. Algorithms.

© Denotational semantics of the executable logic. Correctness.

Brief discussion of effects

ML way.
© All effects are possible at all types.
@ Come up with a monad that combines all effects.
© The semantics is in the Kleisli category of that big monad.

Haskell way.
@ Explicitly define various monads as type constructors.
@ For each effect, or maybe for each combination of a set of
effects.
© Several monads are used in the same program.

@ The programmer decides which monads he wants for each
sub-program.

We develop our results in the Haskell way.

A programming language for non-determinism and

probability

Ground types:
v := Bool | Nat

Powertype constructors:

F:=H|S|P|V

© Hoare, Smyth, Plotkin, Probabilistic.
@ May, must, may/must, on average.

© Angelic, demonic, human.

Types:
o,Ti=7|oxT|o—171]|Fo

Cartesian closed language.

Example

The type
oXT1T—=VT
can be used to code labeled Markov processes with:
©Q label space A =0,
@ state space S = 7, and
@ transition function t : Ax S — VS.

For the sublanguage over the PCF types

o,Ti=vy|oxT|o—T

we take the PCF terms.

(Conditional, arithmetic, A-calculus, fixed-point recursion.)

So no non-determinism or probability.

Non-deterministic choice constants

For each type o and each type constructor F € {H,S,P}, we have
a constant
(©7): Fo x Fo — Fo,

ldea. The term

this @ that

non-deterministically evaluates to this or that, angelically or
demonically.

Probabilistic choice constants

For each type o, we have an infix constant

(®7): Vo xVo — Vo.

Idea. The term
this @ that

non-deterministically evaluates to this or that, with equal
probability.

Monad syntax

Functor. If f: 0 — 7 is a term, then so is
Ff: Fo — Fr.
Unit. For each type o, we have a term
ng: o — Fo.
Multiplication. For each type o, we have a constant
ug: FFo — Fo.

Strength. Left to the audience.

Remark

We could have worked with monads as Kleisli triples
(as in Haskell).

This makes no difference, but our choice is presentationally more
convenient.

n(Ax.0) @ n(Ax.1): F(o — Nat)
Ax.n(0) @n(1): ¢ — FNat

Remark. If we apply the ML way to a call-by-name language,
the terms
(Ax.0) @ (Ax.1)

and
Ax.(0@ 1)

behave in the same way!

Example: randomly choose an infinite sequence of

booleans with uniform distribution

Cantor = (Nat — Bool).

cons: Bool — Cantor — Cantor.
prefix: Bool — VCantor — V Cantor.
prefix p = V(cons p).

random: VCantor.

random = (prefix False random) & (prefix True random).

Possible-results operational semantics

M| v N | v M v N v
Mo N v Mo N v Mo N v Mo N v

My n(v) f(v)dw M v MU n(V) VI aW)
FE(M) § n(w) n(M) 4 n(v) (M) § n(W)

Schedulers

Think of elements of the Cantor space as “schedulers”.

Can decorate the operational semantics with schedulers,

M |° v,

so that
M | v iff there is some s with M |° v.

May and must convergence

M must converge <= for every s there is v with M {° v.

M may converge <= there are s and v with M |}° v.

Our approach is based on this idea.
But we implement it in a different way.

The Sierpinski type

Term formation rules for a Sierpinski type S:
Q@ T:Sisaterm.

@ If M: S and N: o are terms then (if M then N): o is a term.
Q If M,N: S are terms then sois MV N: S.

The only value (or canonical form) of type S'is T.

MUT NV MUT NyT
ifMthen NV MVNUJT MVNJT

Computational adequacy of Scott model

If M is a closed term of ground type and v is a value then

[M] =viff M| v.

The vertical unit-interval type I

@ Interpretated as the cpo ([0, 1], <).

@ Computations of terms M: I allow to semi-decide the
condition p < M with p rational.

© But not the conditions M = p or M < p in general.

The vertical unit-interval type I

@ Interpretated as the cpo ([0, 1], <).

@ Computations of terms M: I allow to semi-decide the
condition p < M with p rational.

© But not the conditions M = p or M < p in general.
@ Naturally regarded as a sub-dcpo of the unit-interval domain.
@ Think of x € T as the interval [x,1].

The vertical unit-interval type I

o
2]

© 000

© 0

Interpretated as the cpo ([0, 1], <).

Computations of terms M: I allow to semi-decide the
condition p < M with p rational.

But not the conditions M = p or M < p in general.
Naturally regarded as a sub-dcpo of the unit-interval domain.
Think of x € I as the interval [x, 1].

We take the primitive operations those for Real PCF,
restricted to such intervals.

Arithmetic functions, p < (—): I — S and pif.

Same operational rules.

The vertical unit-interval type I

o
2]

© 000

© 0

Interpretated as the cpo ([0, 1], <).

Computations of terms M: I allow to semi-decide the
condition p < M with p rational.

But not the conditions M = p or M < p in general.
Naturally regarded as a sub-dcpo of the unit-interval domain.
Think of x € I as the interval [x, 1].

We take the primitive operations those for Real PCF,
restricted to such intervals.

Arithmetic functions, p < (—): I — S and pif.

Same operational rules.

Computational adequacy

[M] = x iff for every rational number p, we have that

p<x <= (p<M)|T.

Definability results

There are programs:
Q@ xdy=(x+y)/2, min, max,
@ 3,V: (Cantor — 8) — S.
© /: (Cantor — I)—1I.

Based on papers:
@ PCF extended with real numbers, 1996.
@ Integration in Real PCF (with Edalat), 2000.
© Synthetic topology of data types and classical spaces, 2004.
@ Exhaustible sets in higher-computation, 2008.

Some code

A(p) = p(L)V (3(As.p(consFalse s)) v I(As.p(cons True s))),

V(p) = p(if V(As.p(cons False s)) A V(As.p(cons True s)) then ¢),

/f = max (f(J_),/)\s.f(cons False s)EB/)\s.f(consTrue s)>

Executable program logic

We extend the programming language PCF + S + I with modal
operators.

We get an executable program logic, MMP.

May and must testing

The S-valued terms are characteristic functions of open sets:
Oo = (0 —8).

OF: Ooc — OFo, for F € {H,P},
O0%f: Ooc — OFo, for F € {S,P}.

Idea. If u: Qo and N: Po,
Q(u)(N) =T <= u(x) =T for some outcome x of a run of N
and

O(u)(N) =T <= u(x) =T for all outcomes x of runs of N.

Example

@ Want to semi-decide whether n: FNat must be prime.
@ Write a semi-decision term prime: Nat — S.

© Run, in the executable logic, the ground term prime n.

Of course, on can also semi-decide whether n must be non-prime.

However:

@ It doesn't follow that primeness of all outcomes of n is
decidable.

@ If n has at least one non-divergent run, then both must tests
diverge.

Recursively define a term f: Nat — PNat by
f(n) =n(n) @ f(n+1),
and let converge: Nat — S be a term such that
converge(n) =T <= n# L.

Then we intend that

{ converge(f(0)) =T
and that
O converge(f(0)) = L

but
O converge(n(0) @ n(1)) =T.

Parallel-convergence is definable from may testing

Taking converge: S — S as the identity, the function
(V):Sx8—S
is characterized by the equation

(pV q) = < converge(n(p) @ n(q)).

However, it cannot be defined from must testing.

Notice that (p A g) = O converge(n(p) @ n(q)).

Probabilistic testing

Define a type of expectations:
Eo=(0c—1I).
We add a constant to the logic:

O Eoc—EVo.

For a {0,1}-valued term u: €0 and a term N: Vo,

O(u)(N): I is the probability that u holds for outcomes of runs of N.

Example

Recursively define a term g: Nat — VNat by

g(n) =mn(n) ® g(n+ 1),

Then we intend that
(O converge(g(0)) =1
and

O converge,(g(0)) = 271

where converge,: Nat — S is a term such that

converge,(x) =T <= x=n.

Parallel-convergence is definable from probabilistic testing

(pV q) =0 < O converge(n(p) © n(q)).

Example: uniform distribution on I

Define a term prefix: I — VI — VI by

prefix x = V(A\y.x @ y),

Define random: VI by

random = (prefix 0 random) & (prefix 1 random).

For example O(Ax.p < x)random =1 — p for any p € 1.

Existential quantification in MMP

Recall that O o = (0 — 8)
O O — OHo

Define
3: HO‘—>((0‘—>S)—>S)

as
() (u) = O(u)(C).

The idea is that this stands for

dx € C.u(x).

Universal quantification in MMP

Similarly, from the must testing operator
0. Ooc — OSo,

we get a term
V: 80 — ((c —8) —38),

The Ploktin powertype has both quantifiers.

Integration in MMP

Recalling that £ 0 = (0 — I), from the probabilistic testing

operator
O: 0 —EVao

we get a term
/: Vo — ((0 - I)—1I)
defined by
u = O(u)®).

where v: Vo and u: 0 — I.

Example

Let (o, f1,..., fny p1,-..,Pn) be an IFS with probabilities.

Its invariant measure v: Vo can be defined as

v = weighted-choice(ps, ..., pn) (V(A)(V), ..., V(f)(V)),

Scriven (MFPS 2008) developed a PCF program for computing
integrals of functions u: o — I with respect to the invariant
measure.

Here we get the alternative algorithm [u = O(u)(v) in the
program logic MMP instead.

Operational semantics of the executable logic MMP

© By compositional compilation into its deterministic
sub-language PCF + S + 1.

@ The translation is the identity on PCF + S+ I terms.

© Reduce may, must and probabilistic testing in MMP to
quantification and integration in PCF + S + I.

Translation of types

This is defined by induction:

o(v) = 7
d(ox7) = ¢(o) x ¢(r),
(o —71) = o(0) = (1),
¢(Fo) = Cantor — ¢(0).

Recall that Cantor = (Nat — Bool).

(Hence the translation is the identity on PCF + S + Ic types.)

Translation of terms

P(x) = x
d(Ax.M) = AIx.¢(M)
p(MN) = ¢(M)¢p(N)
¢(PCF + S+ I constant) = itself
¢(any fixed-point combinator) = itself

(Hence the translation is the identity on PCF + S + I terms.)

Translation of choice operators

For x € {@, @}, we define
d(x) = A ko, k1).As. if head(s) then ko(tail(s)) else kq(tail(s)).

Here ko and k; range over ¢(Fo) = Cantor — ¢(o).

Translation of the modal operators: may

Typing:

o 0 (0 —8)— (Fo—8),
o(¢) : (¢(o) — 8) — ((Cantor — ¢(c)) — S).

We define

() = AurkTs.u(k(s)).

Here
(¢(0) — 8) — ((Cantor — ¢(0)) — 8).

u S

k
The quantification is over the Cantor space.

Translation of the modal operators: must

Typing:
O : (0 —8)—(Fo—8),
6(0) : (6(c) — 8) — ((Cantor — 6()) — S).
We define
() = v kVs.u(k(s)).
Here

(¢(0) — 8) — ((Cantor — ¢(7)) — S).

u S

k
The quantification is over the Cantor space.

Translation of the modal operators: probabilistic

O : (6=1)=(Vo—1),
¢(O) : (é(9) = 1) — ((Cantor — ¢(0)) — I).

We define

S(0O) = Aurk. / u(k(s))s.

Here
(¢(0) — I) — ((Cantor — ¢(0)) — I).

u S

k
The integration is over the Cantor space.

Translation of the monad constructions: functor

o(Ff) = Ak.As.f(k(s)).

Translation of the monad constructions: unit

o(nF) = IxAs.x.

Translation of the monad constructions: multiplication

We consider PCF terms
evens, odds: Cantor — Cantor

that take subsequences at even and odd indices.

Define:
d(pr) = Ak.As.k(evens(s))(odds(s)).

Translation of the monad constructions: strength

Left as an exercise to the audience.

Ground evaluation

For MMP terms M: o with v # I ground, define

Mlv < ¢o(M)J|v.

Denotational semantics of the executable logic

As predicted by the audience.

Types:

© Hoare powertype — Hoare powerdomain.

@ Smyth powertype — Smyth powerdomain.

© Plotkin powertype — Plotkin powerdomain.

@ Probabilistic powertype — probabilistic powerdomain.
Terms:

© These are monads, which have the binary choice operators we
need.

@ The modal operators correspond to the usual descriptions of
the open sets of the powerdomains.

© The probabilistic operator is interpreted by integration.

Computational adequacy

To establish semi-decidability of may, must and probabilistic
testing, we first prove computational adequacy of the model:

For any closed MMP-term M of ground type other than I, and all
syntactical values v,

[M]=[v] < MJ{v.

In particular, for M: I closed and r € Q,

r<[M] < r<MJ{T.

Computational adequacy: technical aspects

Because the model is already known to be computationally
adequate for the deterministic sub-language PCF + S + I:

Computational adequacy holds if and only if [M] = [¢(M)] for
every closed term M of ground type.

Correctness of the semi-decision procedures

Follows directly from computational adequacy.

BUT

Trouble

@ For the proof of computational adequacy, we rely on the
abstract description of the powerdomains by free algebras.

@ For the proof of correctness, we rely on the concrete
descriptions of the powerdomains:
@ Set of closed sets (Hoare).
@ Set of compact sets (Smyth).
© Lenses (Plotkin).
@ Continuous valuations with total mass 1 (Probabilistic).

© The abstract and concrete descriptions agree only for special
kinds of domains.

Partial results

@ For any type o, may testing on terms of type Ho is
semi-decidable.

@ For any continuous type o, must testing on terms of type S o
is semi-decidable.

© For any RSFP type o, may and must testing on terms of
type P o are semi-decidable.

@ For any continuous type o, probabilistic testing on terms of
type Vo is semi-decidable.

Remark

@ If we hadn't included the probabilistic powertype in our
language, we wouldn’t have had any of the above difficulties.

@ May and must testing would be semi-decidable for all types.

© What causes the restrictions is the presence of the
probabilistic powertype.

@ But still the restrictions are not severe in practice.

@ For example, probabilistic computations on any PCF type of
any order have semi-decidable probabilistic testing.

Syntactical description of some types we account for

Define:
S = 4|SxS|(C—S)|HC|SC,
R := S|RxR|(R—R)|PR,
C == R|CxC|VC.

By a continuous Scott domain we mean a bounded complete
continuous dcpo.

Proposition

@ The interpretation of an S type is a continuous Scott domain.
@ The interpretation of an R type is an RSFP domain.

© The interpretation of a C type is a continuous dcpo.

End and summary

© For any type o, may testing on terms of type Ho is
semi-decidable.

@ For any continuous type o, must testing on terms of type S o
is semi-decidable.

© For any RSFP type o, may and must testing on terms of
type P o are semi-decidable.

@ For any continuous type o, probabilistic testing on terms of
type Vo is semi-decidable.

This applies to a large class of (syntactically described) types.

