Semi-decidability of may, must and probabilistic testing in a higher-type setting

Martín Escardó

School of Computer Science, Birmingham University, UK

MFPS 2009, Oxford, Friday 3rd April 2009

Theorem

May, must and probabilistic testing are semi-decidable, in a fairly general setting including higher-types.

Observations:

- Must testing is perhaps surprising: It involves universal quantification over an infinite set.
- The other two involve existential quantification and integration.

Can reduce to quantification and integration over the Cantor space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This is the space of infinite sequences of binary digits.

Can algorithmically quantify and integrate over the Cantor space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Quantification amounts exhaustive search in finite time.

- A programming language for non-determinism and probability.
- ② Logical types. For results of semi-decisions.
- An executable program logic.
- Operational semantics of the executable logic. Algorithms.
- **O** Denotational semantics of the executable logic. Correctness.

Brief discussion of effects

ML way.

- All effects are possible at all types.
- One up with a monad that combines all effects.
- In the semantics is in the Kleisli category of that big monad.

Haskell way.

- Explicitly define various monads as type constructors.
- For each effect, or maybe for each combination of a set of effects.
- Several monads are used in the same program.
- The programmer decides which monads he wants for each sub-program.

We develop our results in the Haskell way.

A programming language for non-determinism and probability

Ground types:

 $\gamma := \texttt{Bool} \mid \texttt{Nat}$

Powertype constructors:

F ::= H | S | P | V

- Ioare, Smyth, Plotkin, Probabilistic.
- May, must, may/must, on average.
- 3 Angelic, demonic, human.

Types:

$$\sigma, \tau ::= \gamma \mid \sigma \times \tau \mid \sigma \to \tau \mid F\sigma$$

Cartesian closed language.

The type

$\sigma \times \tau \to \mathbf{V} \tau$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

can be used to code labeled Markov processes with:

- label space $A = \sigma$,
- 2 state space $S = \tau$, and
- **(a)** transition function $t : A \times S \rightarrow VS$.

For the sublanguage over the PCF types

$$\sigma, \tau ::= \gamma \mid \sigma \times \tau \mid \sigma \to \tau$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

we take the PCF terms.

(Conditional, arithmetic, λ -calculus, fixed-point recursion.)

So no non-determinism or probability.

For each type σ and each type constructor $F \in \{\mathrm{H}, \mathrm{S}, \mathrm{P}\}$, we have a constant

$$(\bigcirc^{\sigma})$$
: $F\sigma \times F\sigma \to F\sigma$,

Idea. The term

this 🚫 that

non-deterministically evaluates to this or that, angelically or demonically.

For each type σ , we have an infix constant

 $(\oplus^{\sigma}): \, \mathrm{V}\,\sigma \times \mathrm{V}\,\sigma \to \mathrm{V}\,\sigma.$

Idea. The term

 $\mathsf{this} \oplus \mathsf{that}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

non-deterministically evaluates to this or that, with equal probability.

Functor. If $f: \sigma \to \tau$ is a term, then so is

 $Ff: F\sigma \rightarrow F\tau.$

Unit. For each type σ , we have a term

 $\eta_F^{\sigma} \colon \sigma \to F\sigma.$

Multiplication. For each type σ , we have a constant

 $\mu_F^{\sigma} \colon FF\sigma \to F\sigma.$

Strength. Left to the audience.

We could have worked with monads as Kleisli triples (as in Haskell).

This makes no difference, but our choice is presentationally more convenient.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

```
\begin{array}{l} \eta(\lambda x.0) \oslash \eta(\lambda x.1) \colon F(\sigma \to \texttt{Nat}) \\ \lambda x.\eta(0) \oslash \eta(1) \colon \sigma \to F\texttt{Nat} \end{array}
```

Remark. If we apply the ML way to a call-by-name language, the terms

 $(\lambda x.0) \odot (\lambda x.1)$

and

 $\lambda x.(0 \otimes 1)$

behave in the same way!

Example: randomly choose an infinite sequence of booleans with uniform distribution

 $Cantor = (Nat \rightarrow Bool).$

cons: Bool \rightarrow Cantor \rightarrow Cantor.

prefix: Bool \rightarrow V Cantor \rightarrow V Cantor.

```
prefix p = V(\cos p).
```

random: VCantor.

random = (prefix False random) \oplus (prefix True random).

$M\Downarrow v$	Ν	' ↓ v	M↓	↓ v		V↓v
$\overline{M \oslash N \Downarrow v}$	M	$N \Downarrow \mathbf{V}$	$M \oplus N$	$V \Downarrow v$	M ($\oplus N \Downarrow v$
$\frac{M \Downarrow \eta(\mathbf{v}) - f(\mathbf{v})}{Ff(M) \Downarrow \eta(w)}$	<u> </u>	$\frac{M\downarrow}{\eta(M)\downarrow}$				$\frac{V\Downarrow\eta(W)}{\downarrow\eta(W)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Think of elements of the Cantor space as "schedulers".

Can decorate the operational semantics with schedulers,

 $M \Downarrow^{s} v$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

so that

 $M \Downarrow v$ iff there is some s with $M \Downarrow^{s} v$.

M must converge \iff for every *s* there is *v* with $M \downarrow^{s} v$.

M may converge \iff there are *s* and *v* with $M \Downarrow^{s} v$.

Our approach is based on this idea. But we implement it in a different way. Term formation rules for a Sierpinski type S:

1 \top : **S** is a term.

2 If M: S and N: σ are terms then (if M then N): σ is a term.

If M, N: S are terms then so is $M \vee N$: S.

The only value (or canonical form) of type S is \top .

 $\frac{M \Downarrow \top \quad N \Downarrow V}{\text{if } M \text{ then } N \Downarrow V} \qquad \frac{M \Downarrow \top}{M \lor N \Downarrow \top} \qquad \frac{N \Downarrow \top}{M \lor N \Downarrow \top}.$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

If M is a closed term of ground type and v is a value then

 $\llbracket M \rrbracket = v \text{ iff } M \Downarrow v.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Interpretated as the cpo $([0,1],\leq)$.
- Computations of terms M: I allow to semi-decide the condition p < M with p rational.</p>

③ But not the conditions M = p or M < p in general.

- Interpretated as the cpo $([0,1],\leq)$.
- Computations of terms M: I allow to semi-decide the condition p < M with p rational.</p>
- Solution not the conditions M = p or M < p in general.
- Output and the second secon

() Think of $x \in I$ as the interval [x, 1].

- 1 Interpretated as the cpo $([0,1],\leq)$.
- Computations of terms M: I allow to semi-decide the condition p < M with p rational.</p>
- Solution not the conditions M = p or M < p in general.
- Saturally regarded as a sub-dcpo of the unit-interval domain.

- **(3)** Think of $x \in I$ as the interval [x, 1].
- We take the primitive operations those for Real PCF, restricted to such intervals.
- Arithmetic functions, p < (-): $I \rightarrow S$ and pif.
- Same operational rules.

- 1 Interpretated as the cpo $([0,1],\leq)$.
- Computations of terms M: I allow to semi-decide the condition p < M with p rational.</p>
- Solution not the conditions M = p or M < p in general.
- Saturally regarded as a sub-dcpo of the unit-interval domain.

- **(3)** Think of $x \in I$ as the interval [x, 1].
- We take the primitive operations those for Real PCF, restricted to such intervals.
- Arithmetic functions, p < (-): $I \rightarrow S$ and pif.
- Same operational rules.

$\llbracket M \rrbracket = x$ iff for every rational number p, we have that

 $p < x \iff (p < M) \Downarrow \top$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There are programs:

- **1** $x \oplus y = (x + y)/2$, min, max,
- $\textcircled{2} \exists, \forall : (\texttt{Cantor} \rightarrow \texttt{S}) \rightarrow \texttt{S}.$
- $\textbf{3} \quad \int : (\texttt{Cantor} \rightarrow \texttt{I}) \rightarrow \texttt{I}.$

Based on papers:

- PCF extended with real numbers, 1996.
- 2 Integration in Real PCF (with Edalat), 2000.
- Synthetic topology of data types and classical spaces, 2004.

Schaustible sets in higher-computation, 2008.

$$\forall (p) = p(\text{if } \forall (\lambda s.p(\text{cons False } s)) \land \forall (\lambda s.p(\text{cons True } s)) \text{ then } c),$$

$$\int f = \max \left(f(\bot), \int \lambda s.f(\text{cons False } s) \oplus \int \lambda s.f(\text{cons True } s) \right).$$

 $\exists (p) = p(\perp) \lor (\exists (\lambda s. p(\text{cons False } s)) \lor \exists (\lambda s. p(\text{cons True } s))),$

We extend the programming language $\mathrm{PCF} + \mathtt{S} + \mathtt{I}$ with modal operators.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

We get an executable program logic, MMP.

The S-valued terms are characteristic functions of open sets:

 $\mathcal{O} \sigma = (\sigma \rightarrow \mathtt{S}).$

$$\begin{split} & \diamondsuit_F^{\sigma} \colon \mathcal{O} \, \sigma \to \mathcal{O} \, F \sigma, \qquad \text{for } F \in \{ \mathtt{H}, \mathtt{P} \}, \\ & \Box_F^{\sigma} \colon \mathcal{O} \, \sigma \to \mathcal{O} \, F \sigma, \qquad \text{for } F \in \{ \mathtt{S}, \mathtt{P} \}. \end{split}$$

Idea. If $u: \mathcal{O}\sigma$ and $N: P\sigma$,

 $(u)(N) = \top \iff u(x) = \top$ for some outcome x of a run of N and

 $\Box(u)(N) = \top \iff u(x) = \top \text{ for all outcomes } x \text{ of runs of } N.$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- Want to semi-decide whether n: FNat must be prime.
- **2** Write a semi-decision term $prime: Nat \rightarrow S$.
- So Run, in the executable logic, the ground term \Box prime *n*.

Of course, on can also semi-decide whether n must be non-prime.

However:

- It doesn't follow that primeness of all outcomes of n is decidable.
- If n has at least one non-divergent run, then both must tests diverge.

Example

Recursively define a term $f: \operatorname{Nat} \to \operatorname{P}\operatorname{Nat}$ by

 $f(n) = \eta(n) \otimes f(n+1),$

and let converge: Nat \rightarrow S be a term such that

 $\operatorname{converge}(n) = \top \iff n \neq \bot.$

Then we intend that

 $\diamond \operatorname{converge}(f(0)) = \top$

and that

 $\Box \operatorname{converge}(f(0)) = \bot$

but

 $\Box \operatorname{converge}(\eta(0) \oslash \eta(1)) = \top.$

Taking converge: $\mathtt{S} \to \mathtt{S}$ as the identity, the function

 (\lor) : S × S → S

is characterized by the equation

 $(p \lor q) = \diamondsuit \operatorname{converge}(\eta(p) \oslash \eta(q)).$

However, it cannot be defined from must testing.

Notice that $(p \land q) = \Box \operatorname{converge}(\eta(p) \oslash \eta(q)).$

Define a type of expectations:

$$\mathcal{E} \sigma = (\sigma \to I).$$

We add a constant to the logic:

$$\bigcirc^{\sigma} \colon \mathcal{E} \, \sigma \to \mathcal{E} \, \mathrm{V} \, \sigma.$$

For a $\{0,1\}$ -valued term $u: \mathcal{E}\sigma$ and a term $N: V\sigma$,

 \bigcirc (*u*)(*N*): I is the probability that *u* holds for outcomes of runs of *N*.

Recursively define a term $g: \texttt{Nat} \rightarrow \texttt{V}\texttt{Nat}$ by

 $g(n) = \eta(n) \oplus g(n+1),$

Then we intend that

 \bigcirc converge(g(0)) = 1

and

```
\bigcirc converge<sub>n</sub>(g(0)) = 2<sup>-n-1</sup>
```

where $converge_n: Nat \rightarrow S$ is a term such that

 $\operatorname{converge}_n(x) = \top \iff x = n.$

Parallel-convergence is definable from probabilistic testing

$(p \lor q) = 0 < \bigcirc \texttt{converge}(\eta(p) \oplus \eta(q)).$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Define a term prefix: $\mathtt{I} \to \mathtt{V}\,\mathtt{I} \to \mathtt{V}\,\mathtt{I}$ by

prefix $x = V(\lambda y. x \oplus y)$,

Define random: VI by

random = (prefix 0 random) \oplus (prefix 1 random).

For example $\bigcirc (\lambda x.p < x)$ random = 1 - p for any $p \in I$.

Recall that $\mathcal{O} \sigma = (\sigma \rightarrow s)$

 $\diamondsuit : \mathcal{O} \, \sigma \to \mathcal{O} \, \mathrm{H} \, \sigma$

Define

 $\exists \colon \mathtt{H}\, \sigma \to ((\sigma \to \mathtt{S}) \to \mathtt{S})$

as

 $\exists (C)(u) = \diamondsuit(u)(C).$

The idea is that this stands for

 $\exists x \in C.u(x).$

Similarly, from the must testing operator

 $\Box\colon \mathcal{O}\,\sigma\to\mathcal{O}\,\mathtt{S}\,\sigma,$

we get a term

$$\forall \colon \mathbf{S}\, \sigma \to ((\sigma \to \mathbf{S}) \to \mathbf{S}),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Ploktin powertype has both quantifiers.

Recalling that $\mathcal{E} \sigma = (\sigma \rightarrow I)$, from the probabilistic testing operator

 $\bigcirc : \mathcal{E} \, \sigma \to \mathcal{E} \, \mathbf{V} \, \sigma$

we get a term

$$\int : \, \mathtt{V}\,\sigma \to ((\sigma \to \mathtt{I}) \to \mathtt{I})$$

defined by

$$\int_{\nu} u = \bigcirc (u)(\nu).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\nu : \mathbf{V} \sigma$ and $\mathbf{u} : \sigma \to \mathbf{I}$.

Let $(\sigma, f_1, \ldots, f_n, p_1, \ldots, p_n)$ be an IFS with probabilities.

Its invariant measure ν : $V\sigma$ can be defined as

 $\nu =$ weighted-choice $(p_1, \ldots, p_n)(\mathbb{V}(f_1)(\nu), \ldots, \mathbb{V}(f_n)(\nu)),$

Scriven (MFPS 2008) developed a PCF program for computing integrals of functions $u: \sigma \to I$ with respect to the invariant measure.

Here we get the alternative algorithm $\int_{\nu} u = \bigcirc (u)(\nu)$ in the program logic MMP instead.

Operational semantics of the executable logic MMP

- By compositional compilation into its deterministic sub-language PCF + S + I.
- 2 The translation is the identity on PCF + S + I terms.
- Reduce may, must and probabilistic testing in MMP to quantification and integration in PCF + S + I.

This is defined by induction:

$$egin{aligned} \phi(\gamma) &=& \gamma, \ \phi(\sigma imes au) &=& \phi(\sigma) imes\phi(au), \ \phi(\sigma o au) &=& \phi(\sigma) o\phi(au), \ \phi(F\sigma) &=& ext{Cantor} o\phi(\sigma). \end{aligned}$$

Recall that $Cantor = (Nat \rightarrow Bool)$.

(Hence the translation is the identity on PCF + S + Ic types.)

 $\phi(x) = x$ $\phi(\lambda x.M) = \lambda x.\phi(M)$

$$\phi(MN) = \phi(M)\phi(N)$$

- $\phi(\text{PCF} + \text{S} + \text{I constant}) = \text{itself}$
- $\phi(any fixed-point combinator) = itself$

(Hence the translation is the identity on PCF + S + I terms.)

For $\star \in \{ \odot, \oplus \}$, we define

$\phi(\star) = \lambda(k_0, k_1) \cdot \lambda s$. if head(s) then $k_0(tail(s))$ else $k_1(tail(s))$.

Here k_0 and k_1 range over $\phi(F\sigma) = \text{Cantor} \rightarrow \phi(\sigma)$.

Typing:

$$\begin{array}{ll} \diamondsuit & : & (\sigma \to \mathrm{S}) \to (F\sigma \to \mathrm{S}), \\ \phi(\diamondsuit) & : & (\phi(\sigma) \to \mathrm{S}) \to ((\mathtt{Cantor} \to \phi(\sigma)) \to \mathrm{S}). \end{array}$$

We define

$$\phi(\diamondsuit) = \lambda u . \lambda k . \exists s . u(k(s)).$$

Here

$$\underbrace{(\phi(\sigma) \to S)}_{u} \to ((\underbrace{\operatorname{Cantor}}_{s} \to \phi(\sigma)) \to S).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The quantification is over the Cantor space.

Translation of the modal operators: must

Typing:

$$\Box : (\sigma \to S) \to (F\sigma \to S),$$

$$\phi(\Box) : (\phi(\sigma) \to S) \to ((Cantor \to \phi(\sigma)) \to S).$$

We define

$$\phi(\Box) = \lambda u . \lambda k . \forall s . u(k(s)).$$

Here

$$\underbrace{(\phi(\sigma) \to \mathbf{S})}_{u} \to ((\underbrace{\operatorname{Cantor}}_{s} \to \phi(\sigma)) \to \mathbf{S}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The quantification is over the Cantor space.

Translation of the modal operators: probabilistic

Typing:

$$\bigcirc : (\sigma \to I) \to (V \sigma \to I), \\ \phi(\bigcirc) : (\phi(\sigma) \to I) \to ((\texttt{Cantor} \to \phi(\sigma)) \to I).$$

We define

$$\phi(\bigcirc) = \lambda u . \lambda k . \int u(k(s)) s.$$

Here

$$\underbrace{(\phi(\sigma) \to \mathbb{I})}_{u} \to ((\underbrace{\operatorname{Cantor}}_{s} \to \phi(\sigma)) \to \mathbb{I}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The integration is over the Cantor space.

Translation of the monad constructions: functor

$$\phi(Ff) = \lambda k \cdot \lambda s \cdot f(k(s)).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 _ 釣��

Translation of the monad constructions: unit

 $\phi(\eta_F) = \lambda x . \lambda s . x.$

We consider PCF terms

 $\mathtt{evens}, \mathtt{odds} \colon \mathtt{Cantor} \to \mathtt{Cantor}$

that take subsequences at even and odd indices.

Define:

 $\phi(\mu_F) = \lambda k . \lambda s . k(\operatorname{evens}(s))(\operatorname{odds}(s)).$

Translation of the monad constructions: strength

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Left as an exercise to the audience.

For MMP terms $M: \sigma$ with $\gamma \neq I$ ground, define

 $M \Downarrow v \iff \phi(M) \Downarrow v.$

As predicted by the audience.

Types:

- **1** Hoare powertype \mapsto Hoare powerdomain.
- **2** Smyth powertype \mapsto Smyth powerdomain.
- **③** Plotkin powertype \mapsto Plotkin powerdomain.
- \bigcirc Probabilistic powertype \mapsto probabilistic powerdomain.

Terms:

- These are monads, which have the binary choice operators we need.
- The modal operators correspond to the usual descriptions of the open sets of the powerdomains.
- The probabilistic operator is interpreted by integration.

To establish semi-decidability of may, must and probabilistic testing, we first prove *computational adequacy* of the model:

Lemma

For any closed MMP-term M of ground type other than I, and all syntactical values v,

 $\llbracket M \rrbracket = \llbracket v \rrbracket \iff M \Downarrow v.$

In particular, for M: I closed and $r \in \mathbb{Q}$,

 $r < \llbracket M \rrbracket \iff r < M \Downarrow \top.$

Because the model is already known to be computationally adequate for the deterministic sub-language PCF + S + I:

Lemma

Computational adequacy holds if and only if $\llbracket M \rrbracket = \llbracket \phi(M) \rrbracket$ for every closed term M of ground type.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Follows directly from computational adequacy.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

BUT

- For the proof of computational adequacy, we rely on the abstract description of the powerdomains by free algebras.
- For the proof of correctness, we rely on the concrete descriptions of the powerdomains:
 - Set of closed sets (Hoare).
 - Set of compact sets (Smyth).
 - Senses (Plotkin).
 - Continuous valuations with total mass 1 (Probabilistic).
- The abstract and concrete descriptions agree only for special kinds of domains.

Theorem

- For any type σ, may testing on terms of type Hσ is semi-decidable.
- **2** For any continuous type σ , must testing on terms of type S σ is semi-decidable.
- Solution For any RSFP type σ, may and must testing on terms of type P σ are semi-decidable.
- For any continuous type σ, probabilistic testing on terms of type V σ is semi-decidable.

Remark

- If we hadn't included the probabilistic powertype in our language, we wouldn't have had any of the above difficulties.
- May and must testing would be semi-decidable for all types.
- What causes the restrictions is the presence of the probabilistic powertype.
- O But still the restrictions are not severe in practice.
- For example, probabilistic computations on any PCF type of any order have semi-decidable probabilistic testing.

Define:

$$S ::= \gamma | S \times S | (C \to S) | H C | S C,$$

$$R ::= S | R \times R | (R \to R) | P R,$$

$$C ::= R | C \times C | V C.$$

By a *continuous Scott domain* we mean a bounded complete continuous dcpo.

Proposition

- The interpretation of an S type is a continuous Scott domain.
- **2** The interpretation of an R type is an RSFP domain.
- The interpretation of a C type is a continuous dcpo.

Theorem

- For any type σ, may testing on terms of type Hσ is semi-decidable.
- **2** For any continuous type σ , must testing on terms of type S σ is semi-decidable.
- Solution For any RSFP type σ, may and must testing on terms of type P σ are semi-decidable.
- For any continuous type σ, probabilistic testing on terms of type V σ is semi-decidable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

This applies to a large class of (syntactically described) types.