Searchable sets, Dubuc-Penon compactness, Omniscience Principles, and the Drinker Paradox

> Martín Escardó Joint work with Paulo Oliva

Theory lab lunch, School of CS, Birmingham, 26 Jan 2010

KORK ERKER ADE YOUR

Abstract

1. A number of contenders for logical notion of compactness coincide.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- 2. Need the axiom of choice $AC(X, 2)$ for one equivalence.
- 3. This is related to the topopological notion of total-separatedness.

Introduction

- 1. Higher-type computability.
- 2. Searchable sets must be compact, Tychonoff theorem.
- 3. Proof theory, Peirce translation, double negation shift.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

4. Work by Dubuc and Penon in topos theory.

Logical notions of compactness

- 1. Drinker paradox.
- 2. Principle of omniscience.
- 3. Searchable sets.
- 4. Dubuc-Penon compactness.

Drinker paradox.

In every pub there is a person a such that if a drinks then everybody drinks.

A set X satisfies the *drinker paradox* iff

$$
\forall p \colon X \to \Omega \; \exists a \in X \, (p(a) \implies \forall x \in X (p(x))).
$$

In classical logic, a set satisfies this condition if and only if it is non-empty.

Boolean drinker paradoxes

 X satisfies the boolean drinker paradox iff

$$
\forall p \colon X \to 2 \ \exists a \in X (pa = 0 \implies \forall x \in X (px = 0)).
$$

Another version: In any pub there is a person a such that if somebody drinks then a drinks:

$$
\forall p \colon X \to 2 \ \exists a \in X(\exists x \in X(px=1)) \implies pa=1.
$$

Searchable sets.

 X is searchable iff

$$
\forall p \colon X \to 2 \exists a \in X (\neg\neg \exists x \in X (px = 1)) \implies pa = 1.
$$

KOX KOX KEX KEX E 1990

Remark

1. Considered a stronger definition in computability:

 $\exists \varepsilon \colon (X \rightarrow 2) \rightarrow X \ \forall p \colon X \rightarrow 2(\neg \neg \exists x \in X(px=1)) \Longrightarrow p(\varepsilon p)=1.$

- 2. The axiom of choice gives the stronger version from the weaker one.
- 3. AC is is validated in realizability interpretations, and provable in ML type theory.
- 4. In this note it is more natural to take the weaker definition as the official one.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Principle of omniscience.

X satisfies the principle of omniscience iff

$$
\forall p \colon X \to 2 \ \ (\exists x \in X(px=1)) \vee (\forall x \in X(px=0)).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Dubuc-Penon compactness

X is Dubuc-Penon compact iff

 $\forall A: \Omega \ \forall B: X \to \Omega \ (\forall x \in X(A \vee B(x))) \implies A \vee \forall x \in X(B(x)).$

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

Boolean Dubuc-Penon compactness

We say that X is boolean Dubuc-Penon compact iff

 $\forall A: \Omega \ \forall B: X \rightarrow 2 \ (\forall x \in X(A \vee B(x))) \implies A \vee \forall x \in X(B(x)).$

Summary of notions

$$
BDP_{\forall}:
$$

\n
$$
\forall p: X \rightarrow 2 \exists a \in X (pa = 0 \implies \forall x \in X (px = 0)).
$$

\n
$$
BDP_{\exists}:
$$

\n
$$
\forall p: X \rightarrow 2 \exists a \in X (\exists x \in X (px = 1)) \implies pa = 1.
$$

\nsearchable:
\n
$$
\forall p: X \rightarrow 2 \exists a \in X (\neg \neg \exists x \in X (px = 1)) \implies pa = 1.
$$

\nPO:
\n
$$
\forall p: X \rightarrow 2 \ (\exists x \in X (px = 1)) \lor (\forall x \in X (px = 0)).
$$

Dubuc-Penon compact: $\forall A: \Omega \ \forall B: X \to \Omega \ (\forall x \in X(A \vee B(x))) \implies A \vee \forall x \in X(B(x)).$

BDP-compact:

 $\forall A: \Omega \ \forall B: X \rightarrow 2 \ (\forall x \in X(A \vee B(x))) \implies A \vee \forall x \in X(B(x)).$

KOD KARD KED KED E VOOR

Theorem

The following are equivalent for any inhabited set X :

- 1. X is searchable.
- 2. X is boolean Dubuc-Penon compact.
- 3. X satisfies the boolean drinker paradox.
- 4. X satisfies the principle of omniscience.

Moreover,

1. Dubuc-Penon compactness of X implies these conditions, and

KORK ERKER ADE YOUR

2. if the axiom of choice $AC(X, 2)$ holds then the converse is true.

Remark

1. In particular, this theorem holds in realizability over system T .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- 2. In Martin Löf type theory.
- 3. And we have developed it in Agda.

Proof structure and more details

emma

- 1. If BDP \forall (X) then X is inhabited.
- 2. DP-compact (\emptyset) .

Proof.

Considering any predicate, say $p(x) = 0$, we get $a \in X$ by definition.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

The left disjunct of the DP-compactness conclusion $A \vee \forall x \in X(B(x))$ holds vacuosly when X is empty. searchable $(X) \implies BDP_{\exists}(X)$.

Proof. $BDP_{\exists}(X)$ has a stronger premise and hence is weaker.

П

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

emma

 $BDP_{\exists}(X) \implies BDP_{\forall}(X)$.

Proof.

For any given $p: X \to 2$, the assumption produces $a \in X$ that satisfies $(\exists x \in X(px=1)) \implies p(a)=1$, and hence $p(a) = 0 \implies \forall x \in X (px = 0)$, and so BDP $\forall (X)$ holds.

KORK ERKER ADE YOUR

 $BDP_{\forall}(X) \implies PO(X)$.

Proof.

For any $p: X \to 2$, the assumption produces $a \in X$ such that $p(a) = 0 \implies \forall x \in X (px = 0).$

П

KORKAR KERKER E VOOR

Because $p(a) = 0$ is decidable, we can reason by cases.

If it holds, then $\forall x \in X (px = 0)$.

Otherwise $p(a) = 1$ and hence $\exists x \in X(p(x) = 1)$.

Therefore $PO(X)$ holds.

 $PO(X) \implies$ searchable(X) for X inhabited. **Proof** Let $p: X \rightarrow 2$.

By PO(X), either $\exists x \in X(px = 1)$ or else $\forall x \in X(px = 0)$.

In the first case we take any a with $pa = 1$, and $\neg\neg \exists x \in X (px = 1) \implies pa = 1$ holds simply because the conclusion is true and so searchable (X) holds.

In the second case we have that $\neg\neg \exists x \in X(px = 1)$ is impossible,

and hence the implication $\neg\neg \exists x \in X(px=1) \implies pa=1$ holds for any $a \in X$,

which can be found by inhabitedness of X , and again searchable (X) holds. LU
Maria E (E) (E) (A)

BDP-compact(X) \implies PO(X). Proof. Let $p: X \to 2$ and define $A = \exists x \in X.(px = 1)$ and $B(x) = (px = 0).$

Then $A \vee B(x)$ holds for any $x \in X$.

In fact, because $B(x)$ is decidable, we can reason by cases.

If $B(x)$ holds, then $A \vee B(x)$.

Otherwise, $px = 1$ and hence A holds, and so does $A \vee B(x)$.

KORKAR KERKER E VOOR

Hence $A \vee \forall x \in X(B(x))$ holds by DP-compactness of X,

which amounts to PO.

emma

 $PO(X) \implies BDP$ -compact (X) . **Proof** By PO, either $\exists x \in X(\neg Bx)$ or else $\forall x \in X(Bx)$.

In the first case A holds, and hence in both cases $A \vee \forall x \in X(B(x))$ holds,

which is the conclusion of boolean DP-compactness.

If B is not decidable, then one cannot apply PO to B .

The following lemma instead applies PO to a suitable predicate constructed with the axiom of choice.

KORKAR KERKER E VOOR

emma

$$
PO(X) \implies DP\text{-compact}(X) \text{ if } AC(X, 2) \text{ holds.}
$$

Proof

Let $x \in X$ and assume that $A \vee B(x)$.

Then, reasoning by cases, there is $y \in 2$ such that $(y = 1 \implies A) \wedge (y = 0 \implies B(x)).$

By the axiom of choice, there is $p: X \rightarrow 2$ such that $(px = 1 \implies A) \wedge (px = 0 \implies B(x))$.

Now assume the premise $\forall x \in X(A \vee B(x))$ of DP-compactness.

By PO, either $\exists x \in X (px = 1)$ or else $\forall x \in X (px = 0)$.

In the first case A holds.

In the second case $\forall x \in X(B(x))$ holds.

Hence in both cases $A \vee \forall x \in X(B(x))$ holds, which is the conclusion of DP-compactness.

KORK ERKER ADE YOUR

Remark

Hence in the absence of the axiom of choice, DP-compactness is the strongest notion, for inhabited sets, among those considered here.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Remark about $AC(X, 2)$.

Because existential quantification over 2 is disjunction, the axiom of choice $AC(X, 2)$ amounts to

$$
(\forall x \colon X(A(x,0) \lor A(x,1))) \implies \exists p \colon X \to 2(\forall x \colon X(A(x,p(x)))).
$$

Hence another way of writing $AC(X, 2)$ is

 $A_0 \cup A_1 = X \implies \exists B_0 \subseteq A_0, B_1 \subseteq A_1(B_0 \cap B_1 = \emptyset \wedge B_0 \cup B_1 = X),$

KORKAR KERKER E VOOR

considering $B_0=p^{-1}(0)$ and $B_1=p^{-1}(1)$.

Theorem A set X is Dubuc-Penon compact if and only if

 $\forall C,B: X \rightarrow \Omega \ \forall x \in X(C(x) \lor B(x)) \Longrightarrow \exists x \in X(C(x)) \lor \forall x \in X(B(x)).$

Proof. (\Leftarrow) consider $C(x) = A$.

 (\Rightarrow) : Consider the proposition $A = \exists x \in X(C(x))$.

Then $\forall x \in X(C(x) \vee B(x))$ implies $\forall x \in X(A \vee B(x))$.

Thus DP-compactness transforms into $A \vee \forall x \in X(B(x))$, as required.

KORK ERKER ADE YOUR

The axiom of choice and total separatedness

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Discussion of previous work.

Totally separated sets.

X is totally separated if

$$
\forall x, y \in X(\forall p: X \rightarrow 2(p(x) = p(y)) \implies x = y.
$$

イロト イ御 トイミト イミト ニミー りんぴ

Connected sets.

X is connected if all maps $X \rightarrow 2$ are constant.

If X is both connected and totally separated, then it has at most one point.

Hence total separatedness can be seen as a strong notion of disconnectedness.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

(Weaker than total disconnectedness.)

Totally separated apartness relations.

To discuss a positive version of total separatedness, we consider apartness relations.

We say that an apartness relation \sharp on X is totally separated if

$$
\forall x, y \in X(x \; \sharp \; y \implies \exists p \colon X \to 2(p(x) \neq p(y))).
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Apartness relation on a set X.

A binary relation \sharp such that

\n- 1.
$$
\neg(x \sharp x)
$$
 (irreflexivity),
\n- 2. $x \sharp y \implies y \sharp x$ (symmetry),
\n- 3. $x \sharp y \implies z \sharp x \lor z \sharp y$ (co-transitivity).
\n

Called sharp if

$$
\neg(x\,\sharp\,y)\implies x=y.
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Examples

- 1. The empty relation is an apartness relation that fails to be sharp but is totally separated in a trivial way,
- 2. If X has decidable equality then the negation \neq of equality is a sharp apartness relation.
- 3. The reals have a sharp apartness relation.
- 4. A sharp apartness relation on the Cantor space $2^{\mathbb{N}}$ is given by

$$
\alpha \sharp \beta \iff \exists i \in \mathbb{N} (\alpha_i \neq \beta_i).
$$

Moreover, this is totally separated, by considering $p(\gamma) = \gamma_i$ where i is a total separatedness witness.

KORKAR KERKER E VOOR

Of course:

Lemma

If X has some totally separated, sharp apartness relation, then X is totally separated.

Proof.

Assume that $\forall p: X \rightarrow 2(p(x) = p(y)).$

The contra-positive of total separatedness of \sharp gives the conclusion $\neg(x \sharp y)$,

KORK ERKER ADE YOUR

which sharpness transforms into $x = y$.

The step that relates choice to total separatedness is this:

Lemma

If AC(X , 2) holds, then any apartness relation on X is totally separated.

Proof.

Assume that $x \sharp y$ and define $A(z, 0) \iff z \sharp y$ and $A(z, 1) \iff z \sharp x$.

Then, by co-transitivity, for every $z \in X$ there is $t \in 2$ such that $A(z,t)$.

By AC(X, 2), there is $p: X \to 2$ such that $A(z, p(z))$ for all z,

KORKAR KERKER E VOOR

which then satisfies $p(x) = 0$ and $p(y) = 1$, as required.

Any set X has an apartness relation given by

$$
x \nmid_2 y \iff \exists p \colon X \to 2(p(x) \neq p(y)),
$$

which is totally separated by construction.

Proof.

Irreflexivity and symmetry are immediate.

To prove co-transitivity, consider $p: X \rightarrow 2$ such that $p(x) \neq p(y)$, and let $z \in Z$.

By decidability of equality on 2, either $p(z) = p(y)$ or $p(z) = p(x)$.

In the first case z \sharp_2 x, and in the second case z \sharp_2 y, and hence $z \sharp_{2} x$ or $z \sharp_{2} y$, as required.

KORK ERKER ADE YOUR

The relation \sharp_2 is the finest apartness relation if AC(X,2) holds.

The apartness relation \sharp_2 doesn't need to be sharp. For example, if X is connected, then \sharp_2 is empty.

Lemma

The apartness relation \sharp_2 on X is sharp if and only if X is totally separated.

Proof.

(\Leftarrow): Because ¬(x \sharp_2 y) amounts to $\forall p$: $X \rightarrow 2(p(x) = p(y))$,

KORKAR KERKER E VOOR

which total separatedness of X transforms into $x = y$.

 $(⇒):$ Lemma [2.](#page-32-0)

Sharp sets.

Say that X is sharp if it has some sharp apartness relation.

By the above lemma, any totally separated set X is sharp, with sharpness witnessed by $\sharp_2.$

Putting the above together:

Theorem If $AC(X, 2)$ holds, X is sharp if and only if it is totally separated.

Moreover, as we have seen, in this case, any sharp apartness relation is totally separated, and \sharp_2 is the finest apartness relation, and is sharp.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Relevance to Dubuc-Penon compactness.

- 1. By the above discussion, if X is connected and has a sharp apartness relation and two distinct points, then $AC(X, 2)$ fails.
- 2. The reals are not Dubuc-Penon compact in the models considered by Dubuc and Penon,.
- 3. They are boolean DP-compact in the same models because they are searchable.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

4. Because these models validate connectedness of \mathbb{R} .

Concluding questions and speculative discussion.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @