Next: About this document ...
Up: Introduction to EXACT NUMERICAL
Previous: Turing-completeness of Real PCF
- 1
-
S. Abramsky and A. Jung.
Domain theory.
In S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3, pages 1-168. Clarendon
Press, Oxford, 1994.
- 2
-
R.M. Amadio and P.-L. Currien.
Domains and Lambda-Calculi, volume 46 of Cambridge Tracts
in Theoretical Computer Science.
Cambridge University Press, 1998.
- 3
-
A. Avizienis.
Binary-compatible signed-digit arithmetic.
In AFIPS Conference Proceedings, volume 1 of 26, pages
663-672, 1964.
- 4
-
H.P. Barendregt.
Lambda calculi with types.
In S. Abramsky, D.M. Gabbay, and T.S.E Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages 117-309. Clarendon
Press, Oxford, 1992.
- 5
-
M.J. Beeson.
Foundations of Constructive Mathematics.
Springer-Verlag, New York, 1985.
- 6
-
R. Bird and P. Wadler.
Introduction to Functional Programming.
Prentice-Hall, New York, 1988.
- 7
-
E. Bishop.
Foundations of constructive analysis.
McGraw-Hill Book Co., New York, 1967.
- 8
-
E. Bishop and D. Bridges.
Constructive Analysis.
Springer-Verlag, Berlin, 1985.
- 9
-
L. Blum, F. Cucker, M. Shub, and S. Smale.
Complexity and real computation.
Springer-Verlag, New York, 1998.
- 10
-
L. Blum, M. Shub, and S. Smale.
On a theory of computation and complexity over the real numbers.
Bull. Amer. Math. Soc., 21:1-46, 1989.
- 11
-
H.J. Boehm.
Constructive real interpretation of numerical programs.
SIGPLAN Notices, 22(7):214-221, 1987.
- 12
-
H.J. Boehm and R. Cartwright.
Exact real arithmetic: Formulating real numbers as functions.
In Turner. D., editor, Research Topics in Functional
Programming, pages 43-64. Addison-Wesley, 1990.
- 13
-
H.J. Boehm, R. Cartwright, M. Riggle, and M.J. O'Donnel.
Exact real arithmetic: A case study in higher order programming.
In ACM Symposium on Lisp and Functional Programming, 1986.
- 14
-
V. Brattka.
Recursive characterization of computable real-valued functions and
relations.
Theoretical Computer Science, 162(1):45-77, August 1996.
- 15
-
L.E.J. Brouwer.
Besitzt jede reelle Zahl eine Dezimalbruchentwicklung?
Math Ann, 83:201-210, 1920.
- 16
-
A. Cauchy.
Sur les moyens d'éviter les erreurs dans les calculs
numériques.
Comptes Rendus 11, pages 789-798, Paris 1840.
Republished in: Augustin Cauchy, 115#115vres complètes, 1ére
série, Tome V, pp 431-442.
- 17
-
J.-M. Chesneaux and J. Vignes.
Les fondements de l'arithmétique stochastique.
C. R. Acad. Sci. Paris Sér. I Math., 315(13):1435-1440,
1992.
- 18
-
R. L. Devaney.
An Introduction to Chaotical Dynamical Systems.
Addison-Wesley, California, 2nd edition, 1989.
- 19
-
P. Di-Gianantonio.
A Functional Approach to Computability on Real Numbers.
PhD thesis, Università Degli Studi di Pisa, Dipartamento di
Informatica, 1993.
- 20
-
P. Di-Gianantonio.
A golden ratio notation for the real numbers.
Technical Report CS-R9602, CWI Amsterdam, 1996.
- 21
-
P. Di-Gianantonio.
Real number computability and domain theory.
Information and Computation, 127(1):11-25, 1996.
- 22
-
A. Edalat.
Domains for computation in mathematics, physics and exact real
arithmetic.
Bulletin of Symbolic Logic, 3(4):401-452, 1997.
- 23
-
A. Edalat and M.H. Escardó.
Integration in Real PCF.
In Proceedings of the Eleventh Annual IEEE Symposium on Logic In
Computer Science, pages 382-393, New Brunswick, New Jersey, USA, 1996.
- 24
-
A. Edalat and P.J. Potts.
A new representation for exact real numbers.
In Mathematical foundations of programming semantics
(Pittsburgh, PA, 1997), page 14 pp. (electronic). Elsevier, Amsterdam, 1997.
- 25
-
M.H. Escardó.
PCF extended with real numbers.
Theoretical Computer Science, 162(1):79-115, 1996.
- 26
-
M.H. Escardó.
Real PCF extended with 116#116
is universal.
In A. Edalat, S. Jourdan, and G. McCusker, editors, Advances in
Theory and Formal Methods of Computing: Proceedings of the Third Imperial
College Workshop, April 1996, pages 13-24, Christ Church, Oxford, 1996. IC
Press.
- 27
-
M.H. Escardó.
PCF extended with real numbers: A domain-theoretic approach to
higher-order exact real number computation.
Technical Report ECS-LFCS-97-374, Department of Computer Science,
University of Edinburgh, December 1997.
PhD thesis at Imperial College of the University of London, 1996.
http://www.dcs.ed.ac.uk/lfcsreps/EXPORT/97/ECS-LFCS-97-374/index.html
.
- 28
-
M.H. Escardó.
Effective and sequential definition by cases on the reals via
infinite signed-digit numerals.
In Third Workshop on Computation and Approximation (Comprox
III), volume 13 of Electronic Notes in Theoretical Computer Science,
1998.
http://www.elsevier.nl/locate/entcs/
.
- 29
-
M.H. Escardó and T. Streicher.
Induction and recursion on the partial real line with applications to
Real PCF.
Theoretical Computer Science, 210(1):121-157, 1999.
- 30
-
A. Grzegorczyk.
On the definition of computable real continuous functions.
Fund. Math., 44:61-77, 1957.
- 31
-
C. A. Gunter.
Semantics of Programming Languages--Structures and Techniques.
The MIT Press, London, 1992.
- 32
-
A. Kanda and D. Park.
When are two effectively given domains identical?
In K. Weihrauch, editor, Theoretical Computer Science
117#117 GI Conference, LNCS, 1979.
- 33
-
S.C. Kleene.
Introduction to Metamathematics.
North-Holland, Amsterdam, 1952.
- 34
-
S.C. Kleene and R.E Vesley.
The Foundations of Intuitionistic Mathematics: Especially in
Relation to Recursive Functions.
North-Holland, Amsterdam, 1965.
- 35
-
Ker-I Ko.
Complexitity Theory of Real Functions.
Birkhauser, Boston, 1991.
- 36
-
C. Kreitz and K. Weihrauch.
Theory of representations.
Theoretical Computer Science, 38(1):17-33, 1985.
- 37
-
J.D. Lawson.
The versatile continuous order.
In M. Main, A. Melton, M. Mislove, and D. Schmidt, editors, Mathematical Foundations of Programming Languages, volume 298 of Lecture Notes in Computer Science, pages 134-160, 1987.
- 38
-
J. Leslie.
The Philosophy of Arithmetic.
Edinburgh, 1817.
- 39
-
M. Mislove.
Topology, domain theory and theoretical computer science.
Topology and its Applications, 89(1-2):3-59, 1998.
- 40
-
R.E. Moore.
Interval analysis.
Prentice-Hall Inc., Englewood Cliffs, N.J., 1966.
- 41
-
N.Th. Müller.
Subpolynomial complexity classes of real functions and real numbers.
In Laurent Kott, editor, Proceedings of the 13th International
Colloquium on Automata, Languages, and Programming, volume 226 of Lecture Notes in Computer Science, pages 284-293, Berlin, 1986. Springer.
- 42
-
J. Myhill.
Criteria of constructivity of real numbers.
J. Symbolic Logic, 18:7-10, 1953.
- 43
-
L.C. Paulson.
ML for the working programmer.
Cambridge University Press, Cambridge, 1991.
- 44
-
G.D. Plotkin.
LCF considered as a programming language.
Theoretical Computer Science, 5(1):223-255, 1977.
- 45
-
G.D. Plotkin.
Domains.
Post-graduate lectures in domain theory, Department of Computer
Science, University of Edinburgh. Available at
hypatia.dcs.qmw.ac.uk/sites/other/domain.notes.other, 1983.
- 46
-
D.B. Plume.
A calculator for exact real number computation.
BSc Honours Project, University Of Edinburgh, May 1998.
- 47
-
P.J. Potts, A. Edalat, and M.H. Escardó.
Semantics of exact real number arithmetic.
In Proceedings of the 12th Annual IEEE Symposium on Logic In
Computer Science, pages 248-257, 1997.
- 48
-
M.B. Pour-el and I. Richards.
Computability and non-computability in classical analysis.
Trans. Am. Math. Soc., pages 539-560, 1983.
- 49
-
H.G. Rice.
Recursive real numbers.
Proc. Amer. Math. Soc., pages 784-791, 1954.
- 50
-
H. Rogers.
Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.
- 51
-
D.S. Scott.
A type-theoretical alternative to CUCH, ISWIM and OWHY.
Theoretical Computer Science, 121:411-440, 1993.
Reprint of a manuscript produced in 1969.
- 52
-
A. Simpson.
Lazy functional algorithms for exact real functionals.
In Mathematical Foundations of Computer Science 1998, volume
1450 of Lecture Notes in Computer Science, pages 323-342.
Springer-Verlag, 1999.
- 53
-
M.B. Smyth.
Effectively given domains.
Theoretical Computer Science, 5(1):256-274, 1977.
- 54
-
M.B. Smyth.
Topology.
In S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 1, pages 641-761. Clarendon
Press, Oxford, 1992.
- 55
-
A.M. Turing.
On computable numbers, with an application to the
Entscheidungsproblem.
Proc. Lond. Math. Soc., II. Ser., 42:230-265, 1936.
- 56
-
A.M. Turing.
On computable numbers, with an application to the
Entscheidungsproblem. A correction.
Proc. Lond. Math. Soc., II. Ser., 43:544-546, 1937.
- 57
-
S. Vickers.
Topology via Logic.
Cambridge University Press, Cambridge, 1989.
- 58
-
J. Vignes.
A stochastic arithmetic for reliable scientific computation.
Math. Comput. Simulation, 35(3):233-261, 1993.
- 59
-
J. Vuillemin.
Exact real computer arithmetic with continued fractions.
IEEE Transactions on Computers, 39(8):1087-1105, 1990.
- 60
-
Klaus W. and C. Kreitz.
Type 2 computational complexity of functions on Cantor's space.
Theoret. Comput. Sci., 82(1, Algorithms Automat. Complexity
Games):1-18, 1991.
- 61
-
K. Weihrauch.
Type 2 recursion theory.
Theoretical Computer Science, 38(1):17-33, 1985.
- 62
-
K. Weihrauch.
Computability.
Springer-Verlag, Berlin, 1987.
- 63
-
K. Weihrauch and C. Kreitz.
Representations of the real numbers and the open subsets of the set
of real numbers.
Annals of Pure and Applied Logic, 35:247-260, 1987.
- 64
-
K. Weirauch.
Computable analysis.
Springer, September 2000.
- 65
-
E. Wiedmer.
Computing with infinite objects.
Theoretical Computer Science, 10:133-155, 1980.
Martin Escardo
2000-10-02