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Let me start with six questions for you

Here is a hint:

2 questions have positive answer.

2 questions have negative answer.

1 question has unknown answer.

1 question doesn’t fall in the above three categories.
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Question 1

Suppose you have written computer programs for calculating functions

f, g : Z→ Z.

Can the computer decide, in finite time, whether or not f = g?

Here Z is the set of integers.

Input: Two functions f, g : Z→ Z.

Output: An element of the set 2 = {0, 1}.
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Question 2

Consider the set S of infinite binary sequences x0, x1, x2, . . . , xn, . . . with xi ∈ 2.

(For example we can use them for representing real numbers in binary.)

Does it make sense to write programs for computing e.g. functions

f : S → Z, (given a sequence, calculate an integer);

g : S → S, (given a real number, calculate another real number).
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Question 3

Suppose you have written computer programs for calculating functions

f, g : S → Z.

Can the computer decide, in finite time, whether or not f = g?

Input: Two functions f, g : S → Z.

Output: An element of the set 2 = {0, 1}.
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Question 4

Suppose you have written computer programs for calculating functions

f, g : S → S

Can the computer decide, in finite time, whether or not f = g?

Input: Two functions f, g : S → S.

Output: An element of the set 2 = {0, 1}.
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Question 5

Can we plot the Mandelbrot set?

Given a point that is not in the boundary, can the computer tell whether it is
inside or outside the set?
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Question 6

It is easy to write a program that systematically lists all provable statements.

(Let’s say formally written in the language of set theory.)

We can also write it so that it stops if it ever lists a statement A and also its
negation ¬A.

Will this program stop?
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Answers

2 questions have positive answer.

2 questions have negative answer.

1 question has unknown answer.

1 question doesn’t fall in the above three categories.

(But what else can we say apart from yes, no or don’t know???)

Let’s leave the questions unanswered for the moment.
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A simple computation

Fix a constant a ∈ [0, 4].

Given x ∈ [0, 1], it is easy to see that ax(1− x) ∈ [0, 1].

Rudimentary model of population growth (Pierre Verhulst (1840s)).

x = 0: zero fish in a lake.
x = 1: the maximum capacity of fish in the lake.
xn fish in the nth generation =⇒ axn(1− xn) fish in the next generation.
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A simple computation

Given x0 ∈ [0, 1], define a sequence by the recurrence

xn+1 = axn(1− xn).

We want to compute x60.

How many fish will the lake have in the 60th generation?
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Let’s calculate with a computer

Choose a = 4 and x0 = 43/64 = 0.671875.

Many other choices will have a similar effect.

Using 7 decimal digits (simple precision) and 16 (double precision) for the
calculations, the computer claims that x60 is

0.934518 0.928604

Rounding to two decimal digits, we get x60 ≈ 0.93.

Is that correct?
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Let’s show intermediate generation counts

This is what the computer claims:

n simple double

-----------------------------

0 0.671875 0.671875

5 0.384327 0.384327

10 0.313034 0.313037

15 0.022702 0.022736

20 0.983813 0.982892

25 0.652837 0.757549 <------ start to differ

30 0.934927 0.481445 <------ completely different

35 0.848153 0.313159

40 0.057696 0.024009

45 0.991613 0.930892

50 0.042174 0.625693

55 0.108415 0.637033

60 0.934518 0.928604 <------ similar by coincidence

Both are completely wrong. The correct answer is x60 = 0.315445.
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How to get this right using a computer

Could use rational arithmetic, with arbitrary-size integers for the numerators and
denominators, keeping then in lowest terms.

But: The computation of xn runs out of memory for n ≥ 30 or so.

With 1Gb of memory. This is a lot of memory!

Pause to run something in the computer.
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How to get this right using a computer

Code numbers using infinitely many digits.

Pause to run something in the computer.
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Computing with infinite sequences

ZN space of infinite sequences of natural numbers.

Schematic model of computation for functions f : ZN → ZN:

Given α ∈ ZN, calculate β = f(α) ∈ ZN as follows:

. . . α3, α2, α1, α0
-

In order to calculate f , repeatedly do:
1. read finitely many integers
2. calculate for a finite amount of time
3. write finitely many integers

. . . β3, β2, β1, β0
-
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Example

Suppose f : ZN → ZN codes the logistic map x 7→ 4x(1− x) in decimal notation.

Want to calculate f(f(f(f(x0)))).

We get the following pipeline:

−→ f −→ f −→ f −→ f −→

Given a pipeline of digits for x0, this will produce a pipeline for digits for x4.

NB. In the programming language I am using, you still write

x4 = f(f(f(f(x0)))).

The pipeline is created by the internal mechanisms of the language.
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First continuity theorem

If f : ZN → ZN is computable in the above fashion, then finite segments of the
output can only depend on finite segments of the input.

To make this precise, for α, β ∈ ZN and p ∈ N, define

α =p β ⇐⇒ αn = βn for all i < p.

We say that α and β agree with precision p.
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First continuity theorem

Theorem. If f : ZN → ZN is computable in the above fashion, then for every
input α ∈ ZN and every desired output precision p ∈ N there is a sufficient input
precision q ∈ N such that

α =q β =⇒ f(α) =p f(β).

To calculate f(α) with precision p, it is enough to know α with precision q.
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First continuity theorem

Theorem. If f : ZN → ZN is computable in the above fashion, then for every
input α ∈ ZN and every desired output precision p ∈ N there is a sufficient input
precision q ∈ N such that

α =q β =⇒ f(α) =p f(β).

To calculate f(α) with precision p, it is enough to know α with precision q.

Compare with:

Definition. A function f : R → R is called continuous iff for every input x ∈ R
and every desired output precision ε > 0 there is a sufficient input precision δ > 0
such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε.
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Computing with decimal notation

ZN ZN

α decimal expansions

subspace

∪

6

.............................
calculate here

- decimal expansions

subspace

∪

6

β

∑
n≥0

αi10
−n

decoding map

?

R
?

given f
-R

? ∑
n≥0

βi10
−n

decoding map

?

Assume α0 ∈ Z and αi+1 ∈ {0, . . . , 9}.
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Computing with decimal notation

decimal expansions ................................................................
computer implementation of f

- decimal expansions

R

decoding map

?

f
-R

decoding map

?

Second Continuity Theorem. If f has a computer implementation, then it is
continuous.
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But decimal notation isn’t good for infinite computation

This was discovered by Brouwer in the 1920’s.

Not even multiplication by three can be computed.
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But decimal notation isn’t good for infinite computation

This was discovered by Brouwer in the 1920’s.

decimal expansions ..................................................
nothing continuous here

- decimal expansions

R

decoding map

?

f(x) = 3x
-R

decoding map

?

Suppose the input starts 0.333333.

• The first digit of the output must be 0 if we eventually read a digit < 3.

• The first digit of the output must be 1 if we eventually read a digit > 3.

•While we read digits = 3, we cannot produce any output for lack of information.

=⇒ If the input is 1/3, the next output digit depends on all input digits.
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Other bases have the same problem

So changing to e.g. binary notation doesn’t help.
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Perhaps shocking, but no reason to abandon hope

Already discussed by Brouwer in the 1920’s.

Change the notation for real numbers.

The problem is boundary cases.

There are many theoretical solutions, used in practice.

I will discuss one of them (the one I used above in practice).
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Use binary or decimal notation with negative digits

Actually Cauchy (1840) proposed this to simplify calculation by hand.

1840 = 1000− 800 + 40 = 240.

Intuition. If we are stuck as above, make a reasonable guess, and adjust it later
using a negative digit if necessary.
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Computing with decimal notation with negative digits

decimal expansions ...........................................
implementation of f

- decimal expansions

R

decoding map

?

f
-R

decoding map

?

Second Continuity Theorem Still holds. If f has a computer implementation,
then it is continuous.

Third Continuity Theorem. If f is continuous, then it has a continuous imple-
mentation.
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But is this just a hack?

A coding A ⊆ ZN with decoding map

decodeA : A→ R

is called admissible if given any other coding B ⊆ ZN with decoding map

decodeB : B → R,

there is a computer program

translate : B → A

that translates from B codes to A codes.

Theorem.

1. Decimal notation with negative digits is an admissible coding.

2. Any two admissible codings can be translated to each other.
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More general picture

ZN ZN

A

subspace

∪

6

concrete f
-B

subspace

∪

6

concrete spaces

X

decoding map

?

mathematical f
-Y

decoding map

?

abstract spaces

Similar continuity theorems.

Notion of admissibility also defined for this more general situation.
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Dictionary between topology and computation

Continuous map. Computable function.

Open set. Semi-decidable set.

Closed and open set. Decidable set.

Compact set. Exhaustively searchable set.

Discrete space. Type with decidable equality.

Hausdorff space. Space with semi-decidable apartness.

Take a theorem in topology,
apply the dictionary,
get a theorem in computability theory.

Unfortunately you have to come up with a new proof.
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Exhaustive search

Algorithmically check all possibilities in finite time.

Either find something.

Or else report that there is nothing to be found.

Old theorem. A set of natural numbers is exhaustively searchable iff it is finite.

Intuition: How could one possibly check infinitely many cases in finite time?

Proof: Removed from this intuition (Halting problem, diagonalization).
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Computational common wisdom

A set of whatever-you-can-think-of is exhaustively searchable iff it is finite.
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Can’t always trust common wisdom

E.g. The Cantor space 2N is exhaustively searchable.

Theorem

1. Exhaustively searchable sets are topologically compact.

2. They are precisely the computable images of the Cantor space.
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Formal systems for computation

Example 1. Gödel’s system T.

Example 2. Platek–Scott–Plotkin’s PCF and FPC.

Example 3. Escardó’s Real PCF and Real FPC.

Example 4. Practical programming languages based on (2).

ML, OCaml, Haskell, . . .

Robin Milner is mainly responsible for making these

theoretical tools available for practical use with many insights.
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Some popularization references

1. In Andrej Bauer’s Mathematics and Computation blog http://math.andrej.

com/

(a) Seemingly impossible functional programs

(b) A Haskell monad for infinite search in finite time

(c) Running a classical proof with choice in Agda

2. Computing with real numbers represented as infinite sequences of digits in
Haskell. http://www.cs.bham.ac.uk/~mhe/papers/fun2011.lhs

3. With Paulo Oliva. What Sequential Games, the Tychonoff Theorem and
the Double-Negation Shift have in Common. http://www.cs.bham.ac.uk/

~mhe/papers/msfp2010/
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Let’s quickly revisit the opening questions and then finish
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Question 1

Suppose you have written computer programs for calculating functions

f, g : Z→ Z

Can the computer decide, in finite time, whether or not f = g?

Here Z is the set of integers.

Input: Two functions f, g : Z→ Z.

Output: An element of the set 2 = {0, 1}.
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Question 2

Consider the set 2N of infinite binary sequences x0, x1, x2, . . . , xn, . . . with xi ∈ 2.

(For example we can use them for representing real numbers in binary.)

Does it make sense to write programs for computing e.g. functions

f : 2N → Z, (given a sequence, calculate an integer);

g : 2N → 2N, (given a real number, calculate another real number).

38



Question 3

Suppose you have written computer programs for calculating functions

f, g : 2N → Z

Can the computer decide, in finite time, whether or not f = g?

Input: Two functions f, g : 2N → Z.

Output: An element of the set 2 = {0, 1}.
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Question 4

Suppose you have written computer programs for calculating functions

f, g : 2N → 2N

Can the computer decide, in finite time, whether or not f = g?

Input: Two functions f, g : 2N → 2N.

Output: An element of the set 2 = {0, 1}.
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Question 5

Can we plot the Mandelbrot set?

Given a point that is not in the boundary, can the computer tell whether it is
inside or outside the set?
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Question 6

It is easy to write a program that systematically lists all provable statements.

(Let’s say formally written in the language of set theory.)

We can also write it so that it stops if it ever lists a statement A and also its
negation ¬A.

Will this program stop?
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Concluding discussion

I. General topology is naturally linked with infinite computation because it is a
theory of approximation.

II. Category theory is also very useful to understand and apply computation with
infinite objects (e.g. final co-algebras, monads).

III. I had to abandon the ambitious plan to also discuss constructive mathematics.

In a nutshell:

1. Give up some logical principles (e.g. excluded middle) and,

2. axioms (e.g. powerset), and

3. develop proofs in the normal mathematical way.

4. Automatically get programs, even if you were not thinking of them (BHK
interpretation).

5. Linked to topology: any function you prove to exist will be continuous.
(But this is a contentious subject.)
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