
An amazingly versatile functional

Mart́ın Escardó

Joint work with Paulo Oliva from Queen Mary, London.

Logic Seminar, Imperial College, 17 Feb 2011



This talk is a selection of work I’ve published with Paulo

1



Selection functions everywhere

1. Game theory. Optimal strategies

2. Proof theory. Program extraction from classical proofs with choice.

3. Topology. Tychonoff theorem

4. Logic and higher-type computability. Bar recursion.

5. Category theoory. Strong monad with infinite strength.

6. Fixed points. Bekic’s Lemma.

2



Proof theory

The negative translation of countable choice is not again choice.

But intuitionistic choice and DNS together imply the translation [Spector].

Double-Negation Shift

∀n ∈ N(¬¬A(n)) =⇒ ¬¬∀n ∈ N(A(n)).

We have a new translation of classical logic into intuitionistic logic.

Using a monad JA = ((A→ R)→ A) rather than KA = ((A→ R)→ R).

The J-shift is an ”infinite strength” of the monad

It realizes the J-translation of countable choice.

3



Topology and computation

Work in category of (computational) spaces and (computable) continuous maps.

A set S ⊆ X has a selection function ε : (X → 2)→ X ⇐⇒ it is compact.

It has a computable selection function iff it is effectively compact.

The infinite strength of the monad implements the Tychonoff Theorem.

Countable products of compact sets are compact.

4



Game theory

The infinite strength optimally plays finite games of unbounded length.

5



Selection functions briefly

X set of things.

Goods in a store; possible moves of a game; proofs of a proposition; point of a space.

R set of values.

Prices; outcomes win, lose, draw; how much money you win; true or false; proofs again.

X
p−→ R value judgement.

How you value it; how much it costs you; pay-off of a move; propositional function.

(X → R)
ε−→ X selects something according to some criterion.

The best, the cheapest, any, something odd.

6



Example 1

X set of goods.

R set of prices.

X
p−→ R table of prices.

(X → R)
ε−→ X selects a cheapest good in a given table.

(X → R)
φ−→ R determines the lowest price in a given table.

Fundamental equation:
p(ε(p)) = φ(p).

The price of a cheapest good is the lowest in the table, of course.

φ = inf ε = arginf,

p(arginf(p)) = inf(p).

7



Example 2

X set of individuals.

R set of booleans false = 0 < 1 = true.

X
p−→ R property.

(X → R)
ε−→ X selects an individual with the highest truth value.

(X → R)
φ−→ R determines the highest value of a given property.

Fundamental equation:
p(ε(p)) = φ(p)

φ = sup = ∃
ε = argsup = arg-∃ = Hilbert’s choice operator

p(ε(p)) = ∃(p) Hilbert’s definition of ∃ in his ε-calculus

8



Maximum-Value Theorem

Let X be a compact non-empty topological space.

Any continuous function p : X → R attains its maximum value.

This means that there is a ∈ X such that

sup p = p(a).

However, the proof is non-constructive when e.g. X = [0, 1].

A maximizing argument a cannot be algorithmically calculated from p.

Of course, there is a Minimum-Value Theorem too.

9



Mean-Value Theorem

Any continuous function p : [0, 1]→ R attains its mean value.

There is a ∈ [0, 1] such that ∫
p = p(a).

Again this a cannot be found from p using an algorithm.

10



Universal-Value Theorem

Let X be a non-empty set and 2 = {0, 1} be the set of booleans.

Any p : X → 2 attains its universal value.

There is a ∈ X such that
∀p = p(a).

This is again a classical statement.

This is usually formulated as the Drinker Paradox:

In any inhabited pub there is a person a s.t. if a drinks then everybody drinks.

We’ve also met the Existential-Value Theorem.

11



General situation

With φ among ∃,∀, sup, inf,
∫
, . . . ,

φ(p) = p(a)

for some a depending on p.

In favourable circumstances, the attaining point a can be calculated as

a = ε(p),

so that

φ(p) = p(ε(p))

12



Selection function

Definition.

A selection function for a (logical, arithmetical, . . . ) quantifier

φ : (X → R)→ R

is a functional
ε : (X → R)→ X

such that
φ(p) = p(ε(p)).

13



Monad morphism

Every ε : (X → R)→ X is the selection function of some φ : (X → R)→ R.

Namely φ defined by
φ(p) = p(ε(p)).

Also written φ = ε.

This construction defines a monad morphism θ : J → K:

JX︷ ︸︸ ︷
(X → R)→ X

Θ−→
KX︷ ︸︸ ︷

(X → R)→ R

ε 7−→ ε

This is a morphism from the selection monad to the quantifier monad.

Oh, I mean to the continuation monad.

14



Units of the monads

X
η−→ KX

x 7−→ λp.p(x).

(Universally and existentially) quantifies over the singleton {x} ⊆ X.

η(x) = ∃{x} = ∀{x}.

X
η−→ JX

x 7−→ λp.x.

Produces a selection function for the singleton quantifier.

15



Functors of the monads

Let f : X → Y .

KX
Kf−→ KY

φ 7−→ λp.φ(λx.p(f(x))).

If φ quantifies over a set S ⊆ X, then Kf(φ) quantifies over the set f(S) ⊆ Y .

JX
Jf−→ JY

ε 7−→ λp.f(ε(λx.p(f(x)))).

If ε is a selection function for φ, then Jf(ε) is a selection function for Kf(φ).

16



Multiplication of the quantifier monad

Involves the perhaps unfamiliar notion of quantification over quantifiers.

KKX
µ−→ KX

Φ 7−→ λp.Φ(λφ.φ(p)).

Suppose A ⊆ KX is a set such that each φ ∈ A existentially quantifies over
a set Bφ ⊆ X, i.e.

φ = ∃Bφ

Then the universal quantifier ∀A ∈ KKX of the set A ⊆ KX satisfies

µ(∀A)(p) = ∀φ ∈ A∃x ∈ Bφ(p(x)).

17



Multiplication of the selection monad

Now we have selection functions that select selection functions.

JJX
µ−→ JX

E 7−→ λp.E(λε.p(ε(p)))(p).

Use the selection function E to find a selection function ε such that p(ε(p)),
and apply this resulting selection function to p to find an element of X.

18



Algebras

KA→ A.

((A→ R)→ R)→ A.

Double-negation elimination.

JA→ A.

((A→ R)→ A)→ A.

Peirce’s Law.

Get different proof translation of classical logic into intuitionistic logic.

This gives a better explanation of call/cc.

19



Strengths

X ×KY t−→ K(X × Y )

(x, φ) 7−→ λp.φ(λy.p(x, y)).

If φ quantifies over S ⊆ Y , then the resulting quantifier quantifies over
{x} × S ⊆ X × Y .

X × JY t−→ J(X × Y )

(x, ε) 7−→ λp.(x, ε(λy.p(x, y))).

This produces a selection function for the above quantifier.

20



We have monoidal monad structures

Because we have strong monads on a cartesian closed category.

TX × TY ⊗−→ T (X × Y )

(u, v) 7−→ (T (λx.t(x, v)))(u).

Warning. This is one way of getting this.

The other way of getting this gives a different ⊗.

The monads are not commutative. (And this is good!)

The above choice of ⊗ is what we need for our purposes.

(“left-to-right” as opposed to “right-to-left”.)

21



Monoidal monad structures

TX × TY ⊗−→ T (X × Y )

(u, v) 7−→ (T (λx.t(x, v)))(u).

1. Sequential games of length two.

2. Binary Tychonoff Theorem.

3. Bekic’s Lemma. An element of JR = KR = ((R→ R)→ R) is a fixed point
operator iff it is its own selection function. Bekic’s formula is given by the
product of selection functions.

22



Examples

KX ×KY ⊗−→ K(X × Y )

(∃A,∃B) 7−→ ∃A×B.

KX ×KY ⊗−→ K(X × Y )

(∀A,∃B) 7−→ λp.∀x ∈ A.∃y ∈ B.p(x, y).

23



What about J?

Well, of course, its product ⊗ commutes with that of K.

(Because we have a monad morphism.)

This means:

if

ε ∈ JX is a selection function for φ ∈ KX

δ ∈ JY is a selection function for γ ∈ KY ,

then

ε⊗ δ is a selection function for φ⊗ γ.

This is good for optimally playing games, as we’ll see.

24



Binary product of quantifiers and of selection functions

In every pub there are a man m and a woman w such that if m buys a drink to w
then every man buys a drink to some woman.

25



Binary product of quantifiers and of selection functions

In every pub there are a man m and a woman w such that if m buys a drink to w
then every man buys a drink to some woman.

If Y = set of men and X = set of women, and if we define φ = ∀ ⊗ ∃ by

φ(p) = (∀y ∈ Y ∃x ∈ X p(y, x)),

then this amounts to saying that

φ(p) = p(a)

for a suitable pair a = (m,w) ∈ X × Y ,

This is calculated as a = (ε⊗ δ)(p) where ε = ∀Y and δ = ∃X.

26



Infinitely iterated left-to-right monoidal monad structure

In certain categories of interest

There is a countable monoidal-monad structure⊗
:
∏
i

JXi → J
∏
i

Xi

uniquely determined by the equation⊗
i

εi = εo ⊗
⊗
i

εi+1.

(Which turns out to be an instance of a bar recursion scheme.)

27



Playing games

Products of selection functions compute optimal plays and strategies.

28



First example

Alternating, two-person game that finishes after exactly n moves.

1. Eloise plays first, against Abelard. One of them wins (no draw).

2. The i-th move is an element of the set Xi.

3. The game is defined by a predicate p :
∏
i<nXi → Bool

that tells whether Eloise wins wins a given play x = (x0, . . . , xn−1).

4. Eloise has a winning strategy for the game p if and only if

∃x0∈X∀x1∈Y ∃x2∈X2∀x3∈X3 · · · p(x0, . . . , xn−1).

29



First example

4. Eloise has a winning strategy for the game p if and only if

∃x0∈X∀x1∈Y ∃x2∈X2∀x3∈X3 · · · p(x0, . . . , xn−1).

If we define

φi =

{
∃Xi if i is even,

∀Xi if i is odd,

then this condition for Eloise having a winning strategy can be equivalently
expressed as (⊗

i<n

φi

)
(p).

30



Calculating the optimal outcome of a game

More generally, the value (⊗
i<n

φi

)
(p)

gives the optimal outcome of the game.

This takes place when all players play as best as they can.

In the first example, the optimal outcome is True if Eloise has a winning strategy,
and False if Abelard has a winning strategy.

31



Calculating an optimal play

Suppose each quantifier φi has a selection function εi (thought of as a policy
function for the i-th move).

Theorem. The sequence

a = (a0, . . . , an−1) =

(⊗
i<n

εi

)
(p)

is an optimal play.

This means that for every stage i < n of the game, the move ai is optimal given
that the moves a0, . . . , ai−1 have been played.

32



Finding an optimal strategy

Theorem. The function fk :
∏
i<kXi → Xk defined by

fk(a1 . . . ak−1) =

((
n−1⊗
i=k

εi

)
(λxk . . . xn−1.p(a1 . . . ak−1xk . . . xn−1))

)
0

is an optimal strategy for playing the game.

This means that given that the sequence of moves a0, . . . , ak−1 have been played,
the move ak = fk(a0, . . . , ak−1) is optimal.

33



Second example

Choose R = {−1, 0, 1} instead, with the convention that
−1 = Abelard wins,

0 = draw,

1 = Eloise wins.

The existential and universal quantifiers get replaced by sup and inf:

φi =

{
supXi if i is even,

infXi if i is odd.

The optimal outcome is still calculated as
⊗

i<n φi, which amounts to

sup
x0∈X!

inf
x1∈Y

sup
x2∈X2

inf
x3∈X3

· · · p(x0, . . . , xn−1).

34



Second example

The optimal outcome is
−1 = Abelard has a winning strategy,

0 = the game is a draw,

1 = Eloise has a winning strategy.

Can compute optimal outcomes, plays and strategies with the same formulas.

35



Classical choice

The T translation of the axiom of choice, AC, is

ACT : ∀x (T∃y(A(x, y))) =⇒ T∃f∀x(A(x, f(x))).

We are interested in T = J or T = K.

When T is the identity monad, this is just AC.

Problem: the T -translation of AC is not an instance of AC.

Spector’s idea: Implement the T -shift. He did this for T = K and X = N in the
dialectica interpretation, using Spector bar recursion.

36



Intuitionistic AC together with T -shift gives (classical) ACT

Proof. 1. Start with (proofs or realizers of)

AC : ∀x (∃y(A(x, y))) =⇒ ∃f∀x(A(x, f(x))).

T -shift : ∀x(T (B(x)))→ T∀x(B(x)).

2. Now apply the functor T to the proof of AC to get

TAC : T∀x (∃y(A(x, y))) =⇒ T∃f∀x(A(x, f(x))).

3. Then take B = ∃y(A(x, y)) and compose with T -shift to get

ACT : ∀x (T∃y(A(x, y))) =⇒ T∃f∀x(A(x, f(x))).

37



Corollary

If the T -shift is realizable then so is ACT .

38



The J-shift

Theorem. The product functional⊗
:
∏
i∈N

JXi∈N → J
∏
i

Xi

realizes the classical J-shift principle

∀i(J(A(i)))→ J∀i(A(i)).

Corollary. ACJN is realizable.

This works e.g. in PAω giving programs from classical proofs in Gödel’s System T
extended with with a constant

⊗
and a (bar) recursion equation.

We are implementing examples in Haskell and Agda.

39



Tychonoff Theorem

⊗
implements the fact that countable products of searchable sets are searchable.

The space 2 = {0, 1} is searchable, and hence so is 2ω.

In particular, we get a program ∀ : (2ω → Bool)→ Bool.

In particular, equality of functions 2ω → N is decidable,

Let’s implement and run this in Haskell.

40



Conclusion

Selection functions everywhere.

Game theory.

Proof theory and program extraction.

Topology.

Category theory.

Fixed-point theory.

41


