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A wish that can’t be fulfilled literally

1. Types are interpreted as topological spaces.

2. Terms are interpreted as points of spaces.

3. Functions are interpreted as continuous maps.

The category of continuous maps of topological spaces is not even
cartesian closed (it doesn’t have exponentials (function spaces)).

Hence it can’t interpret Gödel’s system T or Martin-Löf type theory.

However, there are natural continuous models of type theory.



Johnstone’s topological topos (1979)

Topological topos

Ω ∀ ∃ U

Limit spaces
Π Σ

Sequential spaces

N 1 × →

N∞

1. The site is the category of continuous endomaps of the one-point
compactification N∞ of N with the canonical coverage.

2. Taking colimits of N∞ in topological spaces gives sequential spaces.

3. The limit spaces arise as the subobjects of sequential spaces.



Examples of MLTT-definable objects of the topos
1. The interpretation of the type N→ 2 gives the Cantor space 2N.

2. The interpretation of the type N→ N gives the Baire space NN.

3. The interpretation of the simple types gives the Kleene–Kreisel
continuous functionals. (Start from N and close under →.)

4. The interpretation of the type

N∞
def
=

( ∑
α:N→2

∏
n:N

αn = 0→ αn+1 = 0

)

gives the one-point compactification of N, with ∞ def
= (λi.1,−).

Here “=” is the identity type, interpreted as an equalizer.

5. The interpretation of the type∑
x:N∞

2x=∞

is a T1, non-Hausdorff, but compact, space with two points at
infinity,

∞0
def
= (∞, λp.0), ∞1

def
= (∞, λp.1).
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The topological topos validates continuity axioms

Continuity axiom (Cont)

All functions NN → N are continuous.

∀f : NN → N. ∀α : NN. ∃n : N. ∀β : NN. α =n β =⇒ fα = fβ.

Uniform continuity axiom (UC)

All functions 2N → N are uniformly continuous.

∀f : 2N → N. ∃n : N. ∀α, β : 2N. α =n β =⇒ fα = fβ.

I This assumes a classical meta-theory.

I Towards the end I discuss another topological topos developed
within a constructive meta-theory by Chuangjie Xu and myself.

(Also formalized in Agda by Chuangjie.)

I For the moment ignore constructivity issues until further notice.
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Does the Brouwer-Heyting-Kolmogorov-Curry-Howard interpretation work too?

The topological topos is a lccc — it has Π and Σ.

If we apply the BHKCH interpretation:

Continuity axiom (Cont):

All functions NN → N are continuous.

Πf : NN → N. Πα : NN. Σn : N. Πβ : NN. α =n β → fα = fβ.

Uniform continuity axiom (UC):

All functions 2N → N are uniformly continuous.

Πf : 2N → N. Σn : N. Πα, β : 2N. α =n β =⇒ fα = fβ.
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Theorem of intensional Martin-Löf type theory

If all functions NN → N are continuous then 0 = 1.

 ∏
f : NN→N

∏
α:NN

∑
n:N

∏
β:NN

α =n β → fα = fβ

→ 0 = 1.
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∑
n:N

∏
β:NN

α =n β → fα = fβ

→ 0 = 1.

I could instead say “not all functions f : NN → N are continuous”, but:

1. This would give the false impression that there might exist a
non-continuous function to be found by looking hard enough.
(In the topological topos all functions are continuous, and yet this holds.)

2. It is 0 = 1 that our proof actually does give from the assumption.
(A technicality that leads to the next item.)

3. We would need a universe to map the type 0 = 1 to the type ∅,
and our proof doesn’t require universes.
(So we are more general.)



Theorem of intensional Martin-Löf type theory ∏
f : NN→N

∏
α:NN

∑
n:N

∏
β:NN

α =n β → fα = fβ

→ 0 = 1.

Proof sketch. Let

φ :
∏

f : NN→N

∏
α:NN

∑
n:N

∏
β:NN

α =n β → fα = fβ.

Using φ and the projections and choosing α = 0ω, we get

M : (NN → N)→ N

and
γ :

∏
f : NN→N

∏
β:NN

0ω =Mf β → f0ω = fβ.

Now define m = M(λα.0) and consider

fβ = M(λα.β(αm)).

Then argue Mf = 0 and Mf > 0 give 0 = 1, using f0ω = m.
(Induction on Mf not needed). Q.E.D.



Proof discussion

This is an adaptation of a well known argument (due to Kreisel?).

1. Continuity, choice and extensionality are together impossible.

2. No extensional modulus-of-continuity functional M .

3. But here we are working in intensional Martin-Löf type theory.

4. No continuous modulus-of-continuity functional M .

5. We used our hypothetical M to define a non-continuous function f
and hence prove M wrong.

6. And this is exactly what is happening in the topological topos:
I All functions are continuous.
I But there is no continuous way of finding moduli of continuity.
I No finite amount of information about f suffices to determine its

modulus.



Σ versus ∃
Fix an object X.

1. Σ is understood in slices E/X.
If we have an object classifier U (universe), we can understand it as

Σ : (X → U)→ U.

Given a family of objects we get an object.

2. ∃ is understood as a function

∃ : (X → Ω)→ Ω.

3. They are related via a reflection of U into Ω:

U

‖−‖
−→←↩ Ω.

(∃x : X.P (x)) = ‖Σx : X.P (x)‖.

(Used in Homotopy Type Theory to define ∃ from Σ.)



Continuity in type theory extended with ‖ − ‖

Add a universal map | − | : X → ‖X‖ into types with at most one element.

The elimination rule is (X → P )→ (‖X‖ → P )

for any type P with at most one element.

(We are quotienting X by the relation that identifies any two points.)

∏
f : NN→N

∏
α:NN

∥∥∥∥∥∥
∑
n:N

∏
β:NN

α =n β → fα = fβ

∥∥∥∥∥∥ .
I In a sheaf topos, this means we can find n locally but not globally.

I In a realizability topos, we can find n intensionally but not
extensionally.

I In other toposes this of course acquires other meanings.

I In type theory, it seems difficult to give a direct meaning-explanation.



Another well-known example

If you try to say that f : X → Y is a surjection by saying∏
y:Y

∑
x:X

fx = y,

you are actually saying that f has a section Y → X.

You should instead say

∏
y:Y

∥∥∥∥∥∑
x:X

fx = y

∥∥∥∥∥ .
A similar distinction arises in the definition of the image of a function,
and many other definitions and theorems and proofs.



Disclosing secrets

The elimination rule is (X → P )→ (‖X‖ → P )

for any type P with at most one element.

We can disclose a secret ‖X‖ to P provided we have a map X → P .

Example. If A(n) is decidable then

‖Σn : N. A(n)‖ → Σn : N. A(n).

Proof sketch. If we have any n with A(n), we can find the minimal n,
using the decidability of A(n), but “having a minimal n such that A(n)”
is a type with at most one element.



More general lemma

From now on everything in the talk is joint work with Chuangjie Xu.

Assume that A(n) has at most one element for every n : N.

If for any given n we have that A(n) implies that A(m) is decidable for
all m < n, then

‖Σn : N. A(n)‖ → Σn : N. A(n).



Theorem of MLTT extended with ‖ − ‖

Πf : 2N → N.
∥∥Σn : N. Πα, β : 2N. α =n β =⇒ fα = fβ

∥∥
→ Σn : N. Πα, β : 2N. α =n β =⇒ fα = fβ.

Proof. Set A(n) =
(
Πα, β : 2N. α =n β =⇒ fα = fβ

)
in the lemma.

Corollary. The topological topos validates the uniform-continuity axiom

Πf : 2N → N. Σn : N. Πα, β : 2N. α =n β =⇒ fα = fβ.

Because the premise of the theorem is validated.

(In the topological topos, the theorem can be seen as getting global
existence from local existence by compactness.)



Getting constructive

1. Kleene–Kreisel functionals constructively.

2. Another topological topos for that.

3. If all functions 2N → N are continuous, then the Kleene–Kreisel
hierarchy agrees with the full-type hierarchy.

4. A model of type theory that constructively validates the
uniform-continuity axiom.

5. Implemented in Agda.



Kleene–Kreisel continuous functionals

Identified in the 1950’s as

I Kleene’s countable functionals.

I Kreisel’s continuous functionals.

Start from N and close under
exponentiation.

This is automatically closed under finite
products, excluding the empty product 1.

Fully abstract model of Gödel’s system T .
(By the Kleene-Kreisel density theorem.)

The set-theoretical full type hierarchy is not fully abstract (Kreisel).

Topological topos

Limit spaces

Sequential spaces

QCB spaces

Kleene–Kreisel
spaces



Another topological topos
1. Replace N∞ by the Cantor space 2N.
2. Replace the canonical coverage by the uniform continuity coverage.

Amenable to constructive treatment.
Related to Fourman and to van der Hoeven and Moerdijk 1980’s.

Johnstone’s topological topos
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Sequential spaces

Kleene–Kreisel
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The uniform-continuity coverage

1. Let 2n denote the set of binary strings of length n.

2. For s ∈ 2n, let conss : 2N → 2N denote the concatenation map

conss(α) = sα.

3. A function f : 2N → 2N is uniformly continuous iff

∀m : N.∃n : N.∀s : 2n.∃f ′ : 2N → 2N.∃s′ : 2m.f ◦ conss = conss′ ◦ f ′.

4. This shows that the countable collection {(conss)s:2n | n : N}
satisfies the coverage axiom.

5. This coverage is subcanonical.

6. Moreover, crucially: y
(
2N
)

has the universal property of the
exponential 2N in the resulting topos, where of course 2 is 1 + 1 and
N is the natural numbers object of the topos.



What we get

1. A constructive treatment of sheaves and C-spaces suitable for
development in Martin–Löf type theory.

Definitions, theorems and proofs implemented in Agda.

We don’t need ‖ − ‖.
We need ¬¬(function extensionality).

2. C-Spaces give a constructive model of dependent types with the
uniform continuity axiom.

At the moment we haven’t modelled the universe.

The amalgamation property for the “naive” version of the
Hofmann–Streicher universe holds only up to isomorphism.

We want to avoid sheafification.

3. If we assume that all functions 2N → N are uniformly continuous,
then we can show constructively that the full type hierarchy is
equivalent to the Kleene–Kreisel continuous hierarchy.

End


