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Principle of omniscience

∀p : X → 2 (∃x ∈ X(p(x) = 0) ∨ ∀x ∈ X(p(x) = 1)).

Can be proved for X finite (not for X subfinite in general).

For X = N this is LPO, so can’t be proved.

For X = 2N can be proved from Brouwerian assumptions.
(Continuity, fan theorem. We don’t do this in this talk.)
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Omniscience can be proved for plenty of infinite sets

In spartan contructive mathematics

Everything here is definable in Gödel’s system T .
Higher-type primitive recursion. No general recursion.

We’ll look at omniscient subsets of the Cantor space 2N.

They will be ordinals with respect to the lexicographical order.
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Spartan constructive mathematics

Don’t assume (or reject), among other things:

1. Choice.

2. Powerset.

3. Markov’s principle.

4. Continuity, bar induction, fan theorem, double-negation shift.

5. Church’s thesis.

7. Extensionality (with respect to extensional equality).

We do assume function types.
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But we do need extensionality to prove omniscience theorems

We use extensionality as a hypothesis of theorems rather than as axiom.

∀ extensional p : X → 2 (∃x ∈ X(p(x) = 0) ∨ ∀x ∈ X(p(x) = 1)).

Proof formalized in ML type theory, in Agda notation.
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Drinker paradox

In every pub there is a person a such that if a drinks then everybody drinks.

∀ extensional p : X → 2(∃a ∈ X(p(a) = 1 =⇒ ∀x ∈ X(p(x) = 1))).

For X inhabited, this is equivalent to the omniscience of X.

5



Selection of roots of 2-valued functions

We want to avoid choice. So we build it in.

A selection function for a set X is a functional ε : (X → 2) → X such that for
all extensional p : X → 2,

p(ε(p)) = 1 =⇒ ∀x ∈ X(p(x) = 1).

Equivalently, the function p has a root if and only if ε(p) is a root.

p(ε(p)) = 0⇐= ∃x ∈ X(p(x) = 0).
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Searchable sets

We say that a set is searchable if it has a selection function.
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The generic convergent sequence

N∞ = {x ∈ 2N | ∀i ∈ N(xi ≥ xi+1)}.

Also known as the one-point compactification of the natural numbers.
It is the final co-algebra of the functor X 7→ 1 +X.

Clearly, the set N∞ has elements n = 1n0ω and ∞ = 1ω.

However. N∞ ⊆ N ∪ {∞} =⇒ LPO.

What we can say is that ∀x ∈ N∞ (∀n ∈ N(x 6= n)) =⇒ x =∞.

Proof. For any i, if we had xi = 0, then we would have x = n for some n < i,
and so we must have xi = 1.
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First Omniscience Theorem

Theorem. N∞ is searchable and hence omniscient.

Proof. Given p : N∞ → 2 extensional, let

ε(p) = λi.min
n≤i

p(n).

Clearly ε(p) ∈ N∞ (it is a decreasing sequence). Also

(0) ∀n ∈ N(ε(p) = n =⇒ p(n) = 0),

(1) ε(p) =∞ =⇒ ∀n ∈ N(p(n) = 1).

We need to show that p(ε(p)) = 1 =⇒ ∀x ∈ N∞(p(x) = 1).
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Claim 0. p(ε(p)) = 1 =⇒ ∀n ∈ N(ε(p) 6= n).

Proof. We know that ∀n ∈ N(ε(p) = n =⇒ p(n) = 0).

But, for any n ∈ N, if we had ε(p) = n, we would have p(n) = 1 by extensionality.

Claim 1. p(ε(p)) = 1 =⇒ ε(p) =∞.

Proof. This follows from Claim 0 and the previous lemma that

∀x ∈ N∞ (∀n ∈ N(x 6= n)) =⇒ x =∞.

Claim 2. p(ε(p)) = 1 =⇒ ∀n ∈ N(p(n) = 1).

Proof. This follows from the previous fact ε(p) =∞ =⇒ ∀n ∈ N(p(n) = 1).
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Claim 1. p(ε(p)) = 1 =⇒ ε(p) =∞.

Claim 2. p(ε(p)) = 1 =⇒ ∀n ∈ N(p(n) = 1).

Claim 3. p(ε(p)) = 1 =⇒ p(∞) = 1.

Proof. This follows from Claim 1 and the extensionality of p.

Claim 4. p(ε(p)) = 1 =⇒ ∀x ∈ N∞(p(x) = 1).

Proof. This follows from Claims 2 and 3, and from the density Lemma, formulated
and proved below.

Q.E.D.
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Density Lemma

For all extensional p : N∞ → 2, if

1. p(n) = 1 for every n ∈ N, and

2. p(∞) = 1,

then

3. p(x) = 1 for every x ∈ N∞.

Proof. If we had p(x) 6= 1, then the extensionality of p would give x 6= n for
every n ∈ N and x 6=∞, which is impossible.
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Addendum to the First Omniscience Theorem

ε(p) is the infimum of the set of roots of p.

So it is the least root if p has a some root.

We work with the lexicographical order of the Cantor space and hence N∞.
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Easy closure properties of omniscient sets

1. Finite products.

2. Images.

3. Unions with an omniscient index set.

Omniscient sets are not closed under finite intersections.

A more powerful closure property will be discussed later.
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Reformulations of previous theorems

1 . Every decidable subset of N∞ is either empty or inhabited.

2 . Every decidable subset of N∞ has an infimum.

3 . Every inhabited decidable subset of N∞ has a least element.

3’. Every non-empty decidable subset of N∞ has a least element.
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Transfinite Induction Theorem

For every decidable predicate A on N∞,

∀x ∈ N∞(∀y < x(Ay)) =⇒ Ax,

implies

∀x ∈ N∞(Ax).

Proof. Density Lemma and case analysis on N ∪ {∞}.
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So N∞ is an ordinal

But with respect to decidable (extensional) predicates only.
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Ordinal for our purposes

1. Linearly ordered set.

2. Any inhabited, decidable, extensional subset has a least element.

3. Any decidable, extensional subset satisfies transfinite induction.

We construct plenty of omniscient ordinals in the lexicographic order of 2N.
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Countable sums of omniscient ordinals

Not possible.

E.g. N is a countable sum.

But
∑

iXi + 1 works if we define it properly.
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Squashed sums

The crude definition, with Xn ⊆ 2N, is

∑
n
Xn =

⋃
n

1n0Xn ∪ {∞}.

The refined definition is written down in the accompanying paper.
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Second Omniscience Theorem

Theorem. The searchable subsets of 2N are closed under squashed sums.

Theorem. So are the ordinal subsets of 2N.
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Can reach any ordinal below ε0

And higher using richer type systems.

We apply Coquand, Hancock and Setzer (CSL 1997).

Question. How far can we get?
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Meta-mathematics

HAω is the minimal example of formalized spartan constructive mathematics.

Definition. A set is called full if its complement is empty.

Meta-Theorem. If you can prove that a set has no countable full subset, then you
cannot prove it to be omniscient.

The proof uses the model of continuous functionals and variations.

Back-of-the-envelop argument for the moment. But I am prety confident it works.
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Fun to formalize the proof of omniscience of N∞ in Agda

The proofs of the theorem and main lemmas/claims formalized in one evening.

Those of trivial lemmas in two days.
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History of the trick to define ε

See the last section of the paper with the same title as these slides.

Brouwer (1927), Kreisel–Lacombe–Shoenfield (1959), Bishop (1967),
Grilliot (1971), Ishihara (1991).

But nobody seems to have established a constructive omniscience theorem.

The crucial Density Lemma seems to be a new observation.
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The End
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