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Plan

1. Related work.

2. Background.

3. Topology via the lambda-calculus.

4. Compactly generated locales.
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Related work

1. Taylor (abstract Stone duality).

2. Vickers (geometric logic).

3. Vickers–Townsend (double powerlocale and exponentiation).

4. Escardó, and Bauer–Lesnik (synthetic topology in topos with a dominance).

But here I am interested in a more down-to-earth approach.
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What is a locale?

A locale is a certain kind of space.

I will in fact often use the word space to refer to locales.

A locale is like a topological space.

The notion of open is primary.

But an open is not made out of points.

We have open subspaces rather than open sets.

Difference with topological space:

The subspaces are determined by the opens rather than by points.

E.g. the subspaces of the real line form very different totalities
in topology and in locale theory.
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Usual mathematical formulation of the notion of a locale

1. A frame is a complete lattice in which finite meets distribute over arbitrary
joins:

U ∧
∨
i

Vi =
∨
i

U ∧ Vi.

2. A frame homomorphism is a function that preserves finite meets and arbitrary
joins.

3. The category of continuous maps of locales is the opposite of the category of
frame homomorphisms.

If you take this definition, then a locale is a frame.

But is this what a locale “really is”?
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Isbell’s view

From First Steps in Descriptive Theory of Locales (1991):

“The needed background is almost all in [Johnstone’s Stone Spaces] if you
can stand the point of view: Johnstone’s locales keep intruding their
frames into innocent conversation, rather as if people were continually
showing you their skeletons-

‘Webster was much possessed by death
And saw the skull beneath the skin.’ ”

(Thanks to Alex Simpson for suggesting this appropriate quotation for this talk.)
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Isbell (1991)

”For me, a locale A has a frame T (A) of open parts (sublocales) and a
lattice S(A) of all sublocales. S(A) upside down, is the frame T (Ad) of
the dissolution locale Ad, which has a distinguished monomorphism to A
representing the sublocales of A by their pullbacks (intersections) in Ad,
which are precisely the closed sublocales of Ad.”

In other words, S(A) is freely generated as a coframe by formally adding boolean
complements to the coframe of closed sublocales.
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Where I come from

The idea that open sets are observable properties of computational processes.

1. Brouwer (1920’s): fundamental insights leading to the ideas below.

2. Scott (1960’s): property of finite character.

3. Smyth (1980’s): semi-decidable property.

4. Plotkin (1980’s): physically feasible property.

5. Abramsky (1990’s): observable property.

6. Vickers (1990’s): affirmable property.
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Points

1. Points are fictions.

Rather useful, bonafide, ficticious entities, in fact, if you can get hold of them.

2. They are not the substance spaces are made of.

3. Rather, points are made out of opens (or of what we can observe).

4. More generally, (sub)spaces are made out of opens.

5. The notion of open in locale theory is even more primary than in topology.

Because everything, including points, are made out of opens.
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If taken at face value, the assertion of the title is false

Even the real line R and the Cantor space 2ω may lack enough points when
constructed in the category of locales.

If classical mathematics is available, these spaces do have enough points.

If only constructive mathematics is available, 2ω having enough points is
equivalent to an axiom, accepted by Brouwer, but by no means generally
accepted (the Fan Theorem).
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Interesting locales with no points at all (among many others)

Even if classical mathematics is available:

1. Isbell’s smallest dense sublocale.

Cf. Baire category theorem.

2. Alex Simpson’s locale of random sequences.

There is no sequence satisfying all the proposed axioms for random sequences.
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Synthetic topology

Reason about spaces as if they were made out of points.

A space can be (i) a topological space, (ii) a locale, (iii) a type in a
programming language, and (iv) many other things.

Price: give up classical axioms (excluded middle, axiom of choice).

Methodology: use λ-calculus, and more generally category theory, going all the
way up to topos theory.

Moreover, postulate anti-classical axioms when convenient.
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Pay-off

1. Get clean, short, rather general proofs, with strong computational content.

Even in situations where computational content was not what one was
looking for a priori.

2. Get surprising results in computability theory and its frontiers.

But this is not what I want to emphasize in this talk.
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Synthetic topology by example

A closed sublocale of a compact locale is itself compact.

Approach using bones:

1. Define sublocale, typically a nucleus on the frame.

2. Define closed nuclei.

3. Define compact nuclei.

4. Do some lattice theory.

5. Get a proof that looks very different from the proof in topology.
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Synthetic proof

If X is compact and if F ⊆ X is closed, then F is compact.

Proof.

∀x ∈ F.x ∈ U ⇐⇒ ∀x ∈ X.x 6∈ F ∨ x ∈ U .

Explanation.

Compact: ability to universally quantify over open-set memberships.

∀X : SX → S.

Closed: ability to deny membership.

χX\F : X → S.

Define ∀F : SF → S from ∀X and χX\F and (∨) : S × S → S using
lambda-calculus.
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Synthetic topology by example

A compact sublocale of a Hausdorff locale is closed.

Approach using bones:

1. Further define Hausdorff sublocale (closed diagonal).

2. Characterize this in frame theoretic terms.

(Complicated as concrete characterizations of localic products are non-trivial.)

3. Do some lattice theory.

4. Get a proof that looks very different from the proof in topology.
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Synthetic proof

A compact sublocale K of a Hausdorff locale X is closed.

Proof.

x 6∈ K ⇐⇒ ∀y ∈ K.x 6= y.

Explanation.

Hausdorff: ability to tell points apart.

( 6=): X ×X → S

Define χX\K from ∀K and 6= using lambda-calculus.
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Formalization

Needs cartesian closedness, or exponentiability as the next best thing.

Not available in geneneral.

Needs theorems justifying the logical explanations of topological concepts.

This step is fine!
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Synthetic topology in general

We are willing to get proofs that are different from proofs in topology and in
locale theory.

But we want the same proof for both.

Moreover, we want a proof that also applies to a computational context.

But this is the reverse what actually happened in practice:

1. Proofs in a computational context were obtained.

2. They turn out to be to be proofs in topology and locale theory!

3. And they happen to be simpler than the proofs in topology and locale theory.
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We stumble into a limitation of topology and locale theory

Their categories of spaces are not cartesian closed.

Topologists stumbled into this fact much earlier, starting in the 1930’s.

(Before categories were around, and for different reasons (homotopy).)

In computation, the categories involved were cartesian closed from the start.

(Even if it was not trivial to get them.)
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Solutions in topology

Identify a cartesian closed subcategory.

Compactly generated spaces.

Identify a cartesian closed supercategory.

Quasi-topological spaces.
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Solutions in locale theory

Non-existing.

Identify a cartesian closed subcategory.

Partial work I want to report here.

Identify a cartesian closed supercategory.

Work performed by Heckmann.

Work performed by Vickers–Townsend.
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Compactly generated spaces

In topology, they form a cartesian closed subcategory.

In locale theory,

1. It is not even clear what they should be and how they behave once we
identify them.

2. Once this is elucidated, there are serious obstacles in the way of obtaining
cartesian closeness.
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Compactly generated Hausdorff space

For a Hausdorff space, one defines

KX = colimit of the compact subspaces of X connected by inclusions.

Just X with a finer topology.

Hence Hausdorff too.

X is compactly generated iff this is the same topology as that of X.

Just the identity on points.
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Cartesian closedness

Key facts:

1. Compact Hausdorff spaces are exponentiable.

2. K is a coreflection.

3. Hausdorff spaces form an exponential ideal closed under limits.

Y X = K Y colimQ⊆X Q = K lim
Q⊆X

Y Q.

A routine verification shows that this has the universal property of an
exponential, with binary products K(X × Y ).
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Compactly generated spaces without separation

It is not appropriate to consider colimit of compact subspaces.

Will not discuss this in this talk.
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Compactly generated Hausdorff locales

For a Hausdorff locale X, we again define

KX = colimit of the compact sublocales of X connected by inclusions.

The universal property of colimit gives a canonical map

εX : KX → X.

We say that X is compactly generated if this is a homeomorphism.
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Lawson duality

A preframe is a poset with finite meets and directed joins such that the former
distribute over the latter.

For a preframe L, one has a preframe

L∧ = Lawson dual of L = Scott open filters of L.

For any preframe homomorphism h : L→M , one has a preframe
homomorphism h∧ : M∧ → L∧ defined by

h∧(γ) = {u ∈ L | h(u) ∈ γ}.

This makes Lawson dualization into a contravariant endofunctor.
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Lawson duality

eL : L → L∧∧

u 7→ {φ ∈ L∧ | u ∈ φ}

is a natural transformation.
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Preframe of compact fitted sublocales

For any locale X, let

QX = compact fitted sublocales under reverse sublocale inclusion,

where a sublocale is called fitted if it is the meet of its neighbourhoods.
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The Hofmann–Mislove–Johnstone theorem

The assignment
Q 7→ {U ∈ OX | Q ≤ U}

is an order (and hence preframe) isomorphism

QX ∼= (OX)
∧
.

Here OX is the frame of opens (topology of the locale X).
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Main theorem for compactly generated Hausdorff locales

If X is Hausdorff then all compact sublocales are fitted and

OKX ∼= (QX)
∧
.

Therefore X is compactly generated if and only if the opens are determined by
the compacts via Lawson dualization:

X is compactly generated ⇐⇒ OX ∼= (QX)
∧
.
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Main theorem for compactly generated Hausdorff locales

By the HMJ theorem, it follows that

OKX ∼= (OX)
∧∧
.

From this we conclude that

X is compactly generated ⇐⇒ OX ∼= (OX)
∧∧ naturally.

Hence compactly generated Hausdorff locales seem to be very nice and well
behaved objects.
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Obstacles towards cartesian closeness

We don’t know whether the canonical map KX → X is a monomorphism.

Hence we don’t know whether we have a coreflective subcategory.

Compact Hausdorff spaces are exponentiable (Hyland). Good.

But Y X is Hausdorff if and only if Y is Hausdorff and X has open domain.

Moreover, what about limits of Hausdorff locales?

33



Summary of talk

1. Synthetic topology works well for topological spaces and for program types.

2. There are difficulties making it work for locales.

It does work in some interesting cases, but not in general.

No known large enough ccc of locales.

No known locally small super ccc of locales.
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Appendix
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The patch construction

A striking connection with the patch construction.

This construction coreflectively transforms a locally stably compact locale X
into a locally compact Hausdorff locale, denoted by PatchX and given by

OPatchX = frame of Scott continuous nuclei on OX.
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The patch construction

If X is additionally compact, the preframe QX is a frame. Moreover, this is the
topology of another compact, stably locally compact locale, here denoted
by Xop:

OXop = QX.
Then X ∼= Xop op, which shows that QXop ∼= OX,

PatchXop ∼= PatchX,

the locale X is Hausdorff if and only if X ∼= Xop, if and only if X ∼= PatchX.
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Oddity

For any Hausdorff locale X, the preframe QX is a frame if and only if X is
compact.

Hence if the locale Xop exists then it is homeomorphic to X and both are
compact Hausdorff.

However, for any preframe, the Scott continuous nuclei form a frame.

As a first step towards the main theorem, we show that, for X Hausdorff,

OKX ∼= frame of Scott continuous nuclei on QX.
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Oddity

We can legitimately imagine KX as the patch of the non-existent locale Xop.

Moreover, a nucleus j on QX is Scott continuous if and only if the filter j−1(1)
is Scott open, and that such nuclei are fitted.

Hence

OKX ∼= frame of fitted nuclei j on QX with j−1(1) Scott open.

This brings us back to the HMJ theorem.
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A generalized HMJ theorem.

In terms of frames and nuclei, the HMJ theorem says that, for any frame L, the
assignment j 7→ j−1(1) is an order isomorphism from compact fitted nuclei on L
to the preframe L∧.

Moreover, a nucleus j is compact if and only if the filter j−1(1) is Scott open.

This holds, more generally, if L is a Heyting preframe.
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Theorem

For any Heyting preframe L, every φ ∈ L∧ is of the form j−1(1) for a unique
compact fitted nucleus j on L, given by j =

⊔
{u◦ | u ∈ φ}.

Here a u◦ is the “open” nucleus

u◦(v) = (u⇒ v),

and a nucleus is said to be fitted if it is a join of open nuclei.

In other words, the theorem says that there is an isomorphism

L∧ ∼= preframe of fitted nuclei j on L with j−1(1) Scott open

given by

∆(φ) =
⊔
{u◦ | u ∈ φ}, ∇(j) = j−1(1).
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Now, a sufficient condition for QX being a Heyting preframe is that the meet of
any two compact fitted sublocales, calculated in the lattice of sublocales, be
compact, because then QX has all non-empty joins, which are enough to
construct Heyting implication.

Because this condition holds if the locale X is Hausdorff, the main result
OKX ∼= (QX)

∧ is obtained by considering L = QX in the above theorem.

What makes the above theorem difficult is that, in general, such joins are not
computed pointwise.
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