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Summary

1. Brief background.

(a) Kleene–Kreisel spaces.
(b) Their exhaustible subspaces (≈ compact subspaces).

2. Computability of solutions of equations over Kleene–Kreisel spaces.

Enough/necessary to assume that:
(a) The solution is unique.
(b) The unknown belongs to an exhaustible space.

3. Beyond Kleene–Kreisel spaces.

4. Interesting examples of exhaustible ranges for the unknowns.

Certain sets K ⊆ R[−ε,ε] of analytic functions.
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Kleene–Kreisel spaces

Characterization. Least collection of objects

1. containing the (discrete) natural-number object N,

2. closed under finite products X × Y and exponentials Y X,

in a suitable cartesian closed category of space-like objects.

The following categories work, among others:

Super-categories of Top: filter spaces, limit spaces, equilogical spaces.

Sub-categories of Top: sequential spaces, k-spaces, QCB spaces.

Definition. A kk-space is a computable retract of a Kleene–Kreisel space.
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Exhaustible spaces

Idea. Can algorithmically check all points in finite time.

Definition. A space X is exhaustible iff the functional

∀ : 2X → 2

defined by
∀(p) = 1⇐⇒ p(x) = 1 for all x ∈ X

is computable.

NB. Any p ∈ 2X is the characteristic function of a clopen set.
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Main topological tool

Lemma. For any kk-space X,

the functional ∀ : 2X → 2 is continuous ⇐⇒ X is compact.

Corollary
Exhaustible kk-spaces are compact.

Proof. Computable functions are continuous.
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Theorems [Escardó 2007 (LICS) & 2008 (LMCS)]

1. Finite kk-spaces are exhaustible (of course).

2. Exhaustible kk-spaces are closed under finite and countable products.

3. Hence e.g. the Cantor space 2N is exhastible (previously Berger).

4. Computable images of exhaustible spaces are exhaustible.

5. Any non-empty exhaustible kk-space is a computable image of 2N.

6. Any exhaustible kk-space is computably homeomorphic to
an exhaustible subspace of the Baire space NN (and hence is a Stone space).

7. Any exhaustible non-empty subspace of a Kleene-Kreisel space is a
computable retract (and hence a kk-space).

8. Arzela–Ascoli type characterization.
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Computability of solutions of higher-type equations

Theorem. Assume:

(a) X and Y are kk-spaces,
(b) X is exhaustible,
(c) f : X → Y is computable,
(d) y ∈ Y is computable.

Then, uniformly in the above data,

1. If f(x) = y has a unique solution x ∈ X, then it is computable.

2. The non-solvability of the equation f(x) = y is semi-decidable.
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Corollary.

If f : X → Y is a computable bijection of exhaustible kk-spaces, then it has a
computable inverse.

Cf: a continuous bijection of compact Hausdorff spaces is a homeomorphism.
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Subsummed by the above theorem

1. Equations of the form g(x) = h(x), even with parameters.

(Easy group-theoretical trick.)

2. Finite systems of equations with finitely many variables.

(Because kk-spaces are closed under finite products.)

3. Certain countable systems with countably many variables.

(Because kk-spaces are closed under countable cartesian powers.)
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Applied to compute unique solutions:

Lemma. Assume:

(a) X is a kk-space.
(b) Kn ⊆ X is a sequence of sets that are exhaustible uniformly in n.
(c) Kn ⊇ Kn+1.

If
⋂
nKn is a singleton {x}, then x is computable, uniformly in the data.
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Applied to semi-decide non-existence of solutions:

Lemma. Assume:

(a) X is an exhaustible kk-space.
(b) Kn ⊆ X is a sequence of sets that are decidable uniformly in n.
(c) Kn ⊇ Kn+1.

Emptiness of
⋂
nKn is semi-decidable, uniformly in the data.
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Used to build sets Kn suitable for the application
of the above two lemmas:

Lemma. For every kk-space X there is a family (=n) of equivalence relations
that are decidable uniformly in n and satisfy

x = y ⇐⇒ ∀n. x =n y,

x =n+1 y =⇒ x =n y.

The proof uses the Kleene–Kreisel density theorem.
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Proof of the theorem

The set Kn = {x ∈ X | f(x) =n y} is exhaustible, because it is a decidable
subset of an exhaustible space.

Therefore the result follows from the above lemmas, because

x ∈
⋂
nKn ⇐⇒ ∀n.f(x) =n y ⇐⇒ f(x) = y.
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To go beyond kk-spaces, can use representations

E.g. The compact interval [−1, 1] has an exhaustible set 3ω of representatives.

Binary representation with digit set 3 = {−1, 0, 1}.

Definition. A represented space is exhaustible if it has an exhaustible set of
representatives.
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Computability of solutions of higher-type equations II

Theorem. Assume:

(a) X and Y are computational metric spaces,
(b) X is computationally complete and exhaustible,
(c) f : X → Y is computable,
(d) y ∈ Y is computable.

Then, uniformly in the above data,

1. If f(x) = y has a unique solution x ∈ X, then it is computable.

2. The non-solvability of the equation f(x) = y is semi-decidable.
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Example: Exhaustible spaces of analytic functions

Theorem. Let ε ∈ (0, 1) and b > 0 be computable.

The space A = A(ε, b) of analytic functions f ∈ R[−ε,ε] of the form

f(x) =
∑
n

anx
n

with an ∈ [−b, b] is exhaustible.
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Corollary.

1. The Taylor coefficients of any f ∈ A can be computed from f .

2. For f ∈ R[−ε,ε], it is semi-decidable whether f 6∈ A.
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