Computability of continuous solutions of higher-type equations

Martín Escardó

School of Computer Science, Birmingham University, UK

CiE 2009

Heidelberg, 19-24 July 2009

Summary

- 1. Brief background.
 - (a) Kleene–Kreisel spaces.
 - (b) Their exhaustible subspaces (\approx compact subspaces).
- 2. Computability of solutions of equations over Kleene–Kreisel spaces.

Enough/necessary to assume that:

- (a) The solution is unique.
- (b) The unknown belongs to an exhaustible space.
- 3. Beyond Kleene–Kreisel spaces.
- 4. Interesting examples of exhaustible ranges for the unknowns.

Certain sets $K \subseteq \mathbb{R}^{[-\epsilon,\epsilon]}$ of analytic functions.

Kleene–Kreisel spaces

Characterization. Least collection of objects

- 1. containing the (discrete) natural-number object \mathbb{N} ,
- 2. closed under finite products $X \times Y$ and exponentials Y^X ,
- in a suitable cartesian closed category of space-like objects.

The following categories work, among others:

Super-categories of Top: filter spaces, limit spaces, equilogical spaces.

Sub-categories of Top: sequential spaces, k-spaces, QCB spaces.

Definition. A kk-space is a computable retract of a Kleene–Kreisel space.

Exhaustible spaces

Idea. Can algorithmically check all points in finite time.

Definition. A space X is exhaustible iff the functional

 $\forall \colon 2^X \to 2$

defined by

$$\forall (p) = 1 \Longleftrightarrow p(x) = 1 \text{ for all } x \in X$$

is computable.

NB. Any $p \in 2^X$ is the characteristic function of a clopen set.

Main topological tool

Lemma. For any kk-space X,

the functional $\forall : 2^X \to 2$ is continuous $\iff X$ is compact.

Corollary Exhaustible kk-spaces are compact.

Proof. Computable functions are continuous.

Theorems [Escardó 2007 (LICS) & 2008 (LMCS)]

- 1. Finite kk-spaces are exhaustible (of course).
- 2. Exhaustible kk-spaces are closed under finite and countable products.
- **3**. Hence e.g. the Cantor space $2^{\mathbb{N}}$ is exhastible (previously Berger).
- 4. Computable images of exhaustible spaces are exhaustible.
- 5. Any non-empty exhaustible kk-space is a computable image of $2^{\mathbb{N}}$.
- 6. Any exhaustible kk-space is computably homeomorphic to an exhaustible subspace of the Baire space $\mathbb{N}^{\mathbb{N}}$ (and hence is a Stone space).
- 7. Any exhaustible non-empty subspace of a Kleene-Kreisel space is a computable retract (and hence a kk-space).
- 8. Arzela–Ascoli type characterization.

Computability of solutions of higher-type equations

Theorem. Assume:

(a) X and Y are kk-spaces, (b) X is exhaustible, (c) $f: X \to Y$ is computable, (d) $y \in Y$ is computable.

Then, uniformly in the above data,

1. If f(x) = y has a unique solution $x \in X$, then it is computable.

2. The non-solvability of the equation f(x) = y is semi-decidable.

Corollary.

If $f: X \to Y$ is a computable bijection of exhaustible kk-spaces, then it has a computable inverse.

Cf: a continuous bijection of compact Hausdorff spaces is a homeomorphism.

Subsummed by the above theorem

1. Equations of the form g(x) = h(x), even with parameters.

(Easy group-theoretical trick.)

2. Finite systems of equations with finitely many variables.

(Because kk-spaces are closed under finite products.)

3. Certain countable systems with countably many variables.

(Because kk-spaces are closed under countable cartesian powers.)

Applied to compute unique solutions:

Lemma. Assume:

(a) X is a kk-space. (b) $K_n \subseteq X$ is a sequence of sets that are exhaustible uniformly in n. (c) $K_n \supseteq K_{n+1}$.

If $\bigcap_n K_n$ is a singleton $\{x\}$, then x is computable, uniformly in the data.

Applied to semi-decide non-existence of solutions:

Lemma. Assume:

(a) X is an exhaustible kk-space. (b) $K_n \subseteq X$ is a sequence of sets that are decidable uniformly in n. (c) $K_n \supseteq K_{n+1}$.

Emptiness of $\bigcap_n K_n$ is semi-decidable, uniformly in the data.

Used to build sets K_n suitable for the application of the above two lemmas:

Lemma. For every kk-space X there is a family $(=_n)$ of equivalence relations that are decidable uniformly in n and satisfy

$$\begin{array}{cccc} x = y & \Longleftrightarrow & \forall n. \ x =_n y, \\ x =_{n+1} y & \Longrightarrow & x =_n y. \end{array}$$

The proof uses the Kleene–Kreisel density theorem.

Proof of the theorem

The set $K_n = \{x \in X \mid f(x) =_n y\}$ is exhaustible, because it is a decidable subset of an exhaustible space.

Therefore the result follows from the above lemmas, because

 $x \in \bigcap_n K_n \iff \forall n.f(x) =_n y \iff f(x) = y.$

To go beyond *kk*-spaces, can use representations

E.g. The compact interval [-1,1] has an exhaustible set 3^{ω} of representatives.

Binary representation with digit set $3 = \{-1, 0, 1\}$.

Definition. A represented space is *exhaustible* if it has an exhaustible set of representatives.

Computability of solutions of higher-type equations II

Theorem. Assume:

(a) X and Y are computational metric spaces,
(b) X is computationally complete and exhaustible,
(c) f: X → Y is computable,
(d) y ∈ Y is computable.

Then, uniformly in the above data,

- 1. If f(x) = y has a unique solution $x \in X$, then it is computable.
- 2. The non-solvability of the equation f(x) = y is semi-decidable.

Example: Exhaustible spaces of analytic functions

Theorem. Let $\epsilon \in (0, 1)$ and b > 0 be computable.

The space $A = A(\epsilon, b)$ of analytic functions $f \in \mathbb{R}^{[-\epsilon, \epsilon]}$ of the form

$$f(x) = \sum_{n} a_n x^n$$

with $a_n \in [-b, b]$ is exhaustible.

Corollary.

- 1. The Taylor coefficients of any $f \in A$ can be computed from f.
- 2. For $f \in \mathbb{R}^{[-\epsilon,\epsilon]}$, it is semi-decidable whether $f \notin A$.

References and advertisement

1. Normann. Computing with functionals – computability theory or computer science? Bulletin of Symbolic logic, 12 (2006), no. 1, 43–59.

- 2. Normann. 50 years of continuous functionals. Slides of CiE 08 invited talk.
- 3. Escardó. Infinite sets that admit fast exhaustive search. LICS, IEEE, pp.443-452, 2007.
- 4. Escardó. Exhaustible sets in higher-type computation. LMCS-4 (3:3) 2008.
- 5. Escardó and Oliva. Selection functions, bar recursion, and backward induction. Preprint, 2009.

Thank you.