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Selection

Paulo and I have published many papers about selection funcions.

This talk is a selection of the material.
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Selection functions everywhere

1. Game theory. Optimal strategies

2. Proof theory. Program extraction from classical proofs with choice.

3. Topology. Tychonoff theorem

4. Logic and higher-type computability. Bar recursion.

5. Fixed points. Bekic’s Lemma.
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Selection functions briefly

X set of things.

Goods in a store; possible moves of a game; proofs of a proposition; point of a space.

R set of values.

Prices; outcomes win, lose, draw; how much money you win; true or false; proofs again.

X
p−→ R value judgement.

How you value it; how much it costs you; pay-off of a move; propositional function.

(X → R)
ε−→ X selects something according to some criterion.

The best, the cheapest, any, something odd.
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Example 1

X set of goods.

R set of prices.

X
p−→ R table of prices.

(X → R)
ε−→ X selects a cheapest good in a given table.

(X → R)
φ−→ R determines the lowest price in a given table.

Fundamental equation:
p(ε(p)) = φ(p).

The price of a cheapest good is the lowest in the table, of course.

φ = inf ε = arginf,

p(arginf(p)) = inf(p).
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Example 2

X set of individuals.

R set of booleans false = 0 < 1 = true.

X
p−→ R property.

(X → R)
ε−→ X selects an individual with the highest truth value.

(X → R)
φ−→ R determines the highest value of a given property.

Fundamental equation:
p(ε(p)) = φ(p)

φ = sup = ∃
ε = argsup = arg-∃ = Hilbert’s choice operator

p(ε(p)) = ∃(p) Hilbert’s definition of ∃ in his ε-calculus
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Maximum-Value Theorem

Let X be a compact non-empty topological space.

Any continuous function p : X → R attains its maximum value.

This means that there is a ∈ X such that

sup p = p(a).

However, the proof is non-constructive when e.g. X = [0, 1].

A maximizing argument a cannot be algorithmically calculated from p.

Of course, there is a Minimum-Value Theorem too.
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Mean-Value Theorem

Any continuous function p : [0, 1]→ R attains its mean value.

There is a ∈ [0, 1] such that ∫
p = p(a).

Again this a cannot be found from p using an algorithm.
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Universal-Value Theorem

Let X be a non-empty set and 2 = {0, 1} be the set of booleans.

Any p : X → 2 attains its universal value.

There is a ∈ X such that
∀p = p(a).

This is again a classical statement.

This is usually formulated as the Drinker Paradox:

In any inhabited pub there is a person a s.t. if a drinks then everybody drinks.

We’ve also met the Existential-Value Theorem.
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General situation

With φ among ∃,∀, sup, inf,
∫
, . . . ,

φ(p) = p(a)

for some a depending on p.

In favourable circumstances a can be calculated as

a = ε(p),

so that

φ(p) = p(ε(p))
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Selection function

Definition.

A selection function for a (logical, arithmetical, . . . ) quantifier

φ : (X → R)→ R

is a functional
ε : (X → R)→ X

such that
φ(p) = p(ε(p)).
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Monad morphism

Every ε : (X → R)→ X is the selection function of some φ : (X → R)→ R.

Namely φ defined by
φ(p) = p(ε(p)).

Also written φ = ε.

This construction defines a monad morphism θ : J → K:

JX︷ ︸︸ ︷
(X → R)→ X

Θ−→
KX︷ ︸︸ ︷

(X → R)→ R

ε 7−→ ε

This is a morphism from the selection monad to the quantifier monad.

Oh, I mean to the continuation monad.

11



Units of the monads

X
η−→ KX

x 7−→ λp.p(x).

(Universally and existentially) quantifies over the singleton {x} ⊆ X.

η(x) = ∃{x} = ∀{x}.

X
η−→ JX

x 7−→ λp.x.

Produces a selection function for the singleton quantifier.
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Functors of the monads

Let f : X → Y .

KX
Kf−→ KY

φ 7−→ λp.φ(λx.p(f(x))).

If φ quantifies over a set S ⊆ X, then Kf(φ) quantifies over the set f(S) ⊆ Y .

JX
Jf−→ JY

ε 7−→ λp.f(ε(λx.p(f(x)))).

If ε is a selection function for φ, then Jf(ε) is a selection function for Kf(φ).
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Multiplication of the quantifier monad

Involves the perhaps unfamiliar notion of quantification over quantifiers.

KKX
µ−→ KX

Φ 7−→ λp.Φ(λφ.φ(p)).

Suppose A ⊆ KX is a set such that each φ ∈ A existentially quantifies over
a set Bφ ⊆ X, i.e.

φ = ∃Bφ

Then the universal quantifier ∀A ∈ KKX of the set A ⊆ KX satisfies

µ(∀A)(p) = ∀φ ∈ A∃x ∈ Bφ(p(x)).
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Multiplication of the selection monad

Now we have selection functions that select selection functions.

JJX
µ−→ JX

E 7−→ λp.E(λε.p(ε(p)))(p).

Use the selection function E to find a selection function ε such that p(ε(p)),
and apply this resulting selection function to p to find an element of X.
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Algebras

KA→ A.

((A→ R)→ R)→ A.

Double-negation elimination.

JA→ A.

((A→ R)→ A)→ A.

Peirce’s Law.

Get different proof translation of classical logic into intuitionistic logic.

BTW, I think this gives a better explanation of call/cc. (Blackboard.)
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Strengths

X ×KY t−→ K(X × Y )

(x, φ) 7−→ λp.φ(λy.p(x, y)).

If φ quantifies over S ⊆ Y , then the resulting quantifier quantifies over
{x} × S ⊆ X × Y .

X × JY t−→ J(X × Y )

(x, ε) 7−→ λp.(x, ε(λy.p(x, y))).

This produces a selection function for the above quantifier.
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We have monoidal monad structures

Because we have strong monads on a cartesian closed category.

TX × TY ⊗−→ T (X × Y )

(u, v) 7−→ (T (λx.t(x, v)))(u).

Warning. This is one way of getting this.

The other way of getting this gives a different ⊗.

The monads are not commutative. (And this is good!)

The above choice of ⊗ is what we need for our purposes.

(“left-to-right” as opposed to “right-to-left”.)
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Monoidal monad structures

TX × TY ⊗−→ T (X × Y )

(u, v) 7−→ (T (λx.t(x, v)))(u).

1. Sequential games of length two.

2. Binary Tychonoff Theorem.

3. Bekic’s Lemma. When X = R and hence JX = KX, an element of
KX = ((X → X) → X) is a fixed point operator iff it is its own selection
function. Then Bekic’s Lemma follows.
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Examples

KX ×KY ⊗−→ K(X × Y )

(∃A,∃B) 7−→ ∃A×B.

KX ×KY ⊗−→ K(X × Y )

(∀A,∃B) 7−→ λp.∀x ∈ A.∃y ∈ B.p(x, y).
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What about J?

Well, of course, its product ⊗ commutes with that of K.

(Because we have a monad morphism.)

This means:

if

ε ∈ JX is a selection function for φ ∈ KX

δ ∈ JY is a selection function for γ ∈ KY ,

then

ε⊗ δ is a selection function for φ⊗ γ.

This is good for optimally playing games, as we’ll see.

21



Binary product of quantifiers and selection functions

In every pub there are a man a0 and a woman a1 such that if a0 buys a drink
to a1 then every man buys a drink to some woman.
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Binary product of quantifiers and selection functions

In every pub there are a man b and a woman c such that if b buys a drink to c
then every man buys a drink to some woman.

If X = set of men and Y = set of women, and if we define φ = ∀ ⊗ ∃ by

φ(p) = (∀x ∈ X ∃y ∈ Y p(x, y)),

then this amounts to saying that

φ(p) = p(a)

for a suitable pair a = (b, c) ∈ X × Y ,

This is calculated as a = (ε⊗ δ)(p) where ε = ∀X and δ = ∃Y .
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Infinitely iterated left-to-right monoidal monad structure.

In certain categories of interest

There is a countable monoidal-monad structure⊗
:
∏
i

JXi → J
∏
i

Xi

uniquely determined by the equation⊗
i

εi = εo ⊗
⊗
i

εi+1.

(Which turns out to be an instance of bar recursion.)
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Playing games

Products of selection functions compute optimal plays and strategies.
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First example

Alternating, two-person game that finishes after exactly n moves.

1. Eloise plays first, against Abelard. One of them wins (no draw).

2. The i-th move is an element of the set Xi.

3. The game is defined by a predicate p :
∏
i<nXi → Bool

that tells whether Eloise wins wins a given play x = (x0, . . . , xn−1).

4. Eloise has a winning strategy for the game p if and only if

∃x0∈X∀x1∈Y ∃x2∈X2∀x3∈X3 · · · p(x0, . . . , xn−1).
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First example

4. Eloise has a winning strategy for the game p if and only if

∃x0∈X∀x1∈Y ∃x2∈X2∀x3∈X3 · · · p(x0, . . . , xn−1).

If we define

φi =

{
∃Xi if i is even,

∀Xi if i is odd,

then this condition for Eloise having a winning strategy can be equivalently
expressed as (⊗

i<n

φi

)
(p).
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Calculating the optimal outcome of a game

More generally, the value (⊗
i<n

φi

)
(p)

gives the optimal outcome of the game.

This takes place when all players play as best as they can.

In the first example, the optimal outcome is True if Eloise has a winning
strategy, and False if Abelard has a winning strategy.
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Calculating an optimal play

Suppose each quantifier φi has a selection function εi (thought of as a policy
function for the i-th move).

Theorem. The sequence

a = (a0, . . . , an−1) =

(⊗
i<n

εi

)
(p)

is an optimal play.

This means that for every stage i < n of the game, the move ai is optimal
given that the moves a0, . . . , ai−1 have been played.
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Finding an optimal strategy

Theorem. The function fk :
∏
i<kXi → Xk defined by

fk(a) =

((
n−1⊗
i=k

εi

)
(λx.p(a : :x))

)
0

is an optimal strategy for playing the game.

This means that given that the sequence of moves a0, . . . , ak−1 have been
played, the move ak = fk(a0, . . . , ak−1) is optimal.
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Second example

Choose R = {−1, 0, 1} instead, with the convention that
−1 = Abelard wins,

0 = draw,

1 = Eloise wins.

The existential and universal quantifiers get replaced by sup and inf:

φi =

{
supXi if i is even,

infXi if i is odd.

The optimal outcome is still calculated as
⊗

i<n φi, which amounts to

sup
x0∈X!

inf
x1∈Y

sup
x2∈X2

inf
x3∈X3

· · · p(x0, . . . , xn−1).
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Second example

The optimal outcome is
−1 = Abelard has a winning strategy,

0 = the game is a draw,

1 = Eloise has a winning strategy.

Can compute optimal outcomes, plays and strategies with the same formulas.
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Classical choice
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Tychonoff Theorem
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Conclusion

Selection functions everywhere.
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